
1

EC2: Ensemble Clustering and Classification for
Predicting Android Malware Families

Tanmoy Chakraborty, Fabio Pierazzi and V.S. Subrahmanian

Abstract—As the most widely used mobile platform, Android is also the biggest target for mobile malware. Given the increasing
number of Android malware variants, detecting malware families is crucial so that security analysts can identify situations where
signatures of a known malware family can be adapted as opposed to manually inspecting behavior of all samples. We present EC2
(Ensemble Clustering and Classification), a novel algorithm for discovering Android malware families of varying sizes – ranging from
very large to very small families (even if previously unseen). We present a performance comparison of several traditional classification
and clustering algorithms for Android malware family identification on DREBIN, the largest public Android malware dataset with labeled
families. We use the output of both supervised classifiers and unsupervised clustering to design EC2. Experimental results on both the
DREBIN and the more recent Koodous malware datasets show that EC2 accurately detects both small and large families,
outperforming several comparative baselines. Furthermore, we show how to automatically characterize and explain unique behaviors
of specific malware families, such as FakeInstaller, MobileTx, Geinimi. In short, EC2 presents an early warning system for
emerging new malware families, as well as a robust predictor of the family (when it is not new) to which a new malware sample
belongs, and the design of novel strategies for data-driven understanding of malware behaviors.

Index Terms—Android, malware, ensemble, classification, clustering.
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1 INTRODUCTION

With over 1.4 billion active phones worldwide [1] and
over 290,000 phones sold in Q1 2016 alone with an 84.1%
market share [2], Android dominates the mobile market.
But this success has a dark side - more than 97% of mobile
malware target Android devices [3] in order to steal money
or private data. Examples include illegally sending SMSs
to premium-rate numbers, stealing calendars, emails, texts,
contact lists, social network accounts, documents and bank-
ing credentials. To elude detection, malicious developers
use obfuscation techniques (e.g., polymorphism and meta-
morphism) [19] to automatically generate multiple variants
of the same malware, thus creating a new family [17] of
malware samples having the same purpose but slightly
different characteristics (e.g., different file hash, names of
functions and variables). In fact, almost 9,000 new Android
malware samples were found daily in 2016, an increase of
40% over 2015 [8].

Given the increasing number of new malware samples,
manual investigation is impractical and might lead to sig-
nificant delays in the release of detection signatures for anti-
malware tools. The only viable way to manage such huge
volumes of malware is to design novel algorithms that can
automatically group similar samples into families. This has
several major benefits – (i) if a sample belongs to a known
family, the same removal techniques can be re-used; (ii)
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security analysts can focus their manual investigation on
the few new samples that do not belong to any known
family, thus optimizing their limited time and resources;
(iii) understanding the characteristics of each family helps
to detect more robust signatures for anti-malware tools.

Most literature on mobile malware analysis [11], [14],
[21], [48], [58] is focused on detection (i.e., distinguishing
malware from benign software). Several efforts [28], [29],
[30], [55], [56], [58], [59] have been proposed in the context
of detecting Android malware families. Some of these works
consider outdated datasets (e.g., [30], [59]) and/or do not
characterize malware families through feature explanation
(e.g., [28]), mostly because they use features that are low
level and hard to interpret, such as API call sequences.
However, the major limitation of all existing works [28],
[29], [30], [55], [56], [58], [59] is that they focus only on
large families (e.g., size > 10) for which training data is
available, and ignore small families which represent the
novel malware variants on which security analysts should
focus their attention.

We propose EC2, the first algorithm that effectively
classifies a malware sample into both large and small fam-
ilies (even if previously unseen). We begin by presenting
a thorough performance comparison on the classification
of Android malware families1 by using DREBIN [4], [14],
the largest publicly available Android malware dataset with
labeled families. Several state-of-the-art classification and
clustering algorithms are evaluated for the task of family
classification by considering different combinations of static

1. It is important to observe that in some cases the concept of
“malware family” may be fuzzy, as a security analyst may consider that
a sample belongs to more than one family. For this reason, all results in
this paper refer to the publicly available and labeled DREBIN [4] and
Koodous [9] datasets.
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and dynamic features. We then design EC2 as an ensemble
that combines the best of classification and clustering, and
evaluate its performance both on DREBIN [4] and on the
more recent Koodous academic dataset [9], outperforming
several comparative baselines [30], [42], [52], [60].

The paper makes five major contributions.
(i) We thoroughly assess performance of several state-of-

the-art supervised classification and unsupervised cluster-
ing algorithms for Android malware family identification.
The best supervised classifier (Random Forest) has accu-
racy2 of 0.93 for large families (size ≥ 10), which decreases
to 0.73 for small families (size < 10) due to lack of training
data. In contrast, the best unsupervised clustering method
(DBSCAN) achieves accuracy of 0.91 for small families and
0.86 for large families (see Table 5).

(ii) While past research has looked at clustering and clas-
sification separately for traditional (mostly PC) malware,
EC2 combines the results of both clustering and classifica-
tion to overcome the drawbacks of each. EC2 delivers sig-
nificant performance across all malware families (including
families with just one sample), achieving an overall accuracy
of 0.97, and outperforming several comparative baselines on
DREBIN.

(iii) Unlike all related works [28], [29], [30], [55], [56],
[58], [59], EC2 is the first algorithm that can classify malware
samples into small or even previously unseen Android mal-
ware families. Given the huge number of malware released
in the wild everyday [8], the capability of detecting small
and previously unseen malware families is critical for prior-
itizing manual inspection of new threats. We show how we
identify samples belonging to very small malware families -
in fact showing 0.43 Precision and 0.31 Recall for detecting
families of size just 1.

(iv) We show how to characterize different malware fam-
ilies by extracting family-specific features that distinguish
one family from others. We chose to use the DREBIN dataset
as each sample is labeled with a ground truth family to
which the sample belongs [4]; our analysis reveals that the
most important features for malware family classification
are: re-using signatures for signing malware variants, re-
questing network permissions, requesting permissions to
read/send SMS messages (used to send texts to premium-
rate numbers) and use of encryption (often used for string
decryption or repacking of malicious code to avoid static
analysis). We also show that some malware families are
better identified through static features, while others require
dynamic analysis (e.g., because they adopt string decryption
at runtime of CnC server URLs and CnC commands to
avoid trivial detection via static code analysis). We observe
that more recent malware families may show different be-
haviors trends [55] as obfuscation strategies become more
sophisticated and adapt to anti-virus strategies; however,
the approach we propose for family characterization is
general and can also be applied to more recent malware
samples.

(v) To show that EC2 is equally efficient in detecting
recently released malware samples, we use Koodous, a
dataset (Dec 2015 to May 2016) of recent Android malware

2. We report accuracy in terms of Macro F-Score (MaF*), formally
defined in Section 8.

samples. Here too, EC2 outperforms other baselines with an
overall F-Score of 0.74.

The rest of the paper is organized as follows. Section 2
presents a thorough literature review on malware detection
and classification. Section 3 presents the DREBIN dataset.
Section 4 describes static and dynamic features for malware
samples. Section 5 shows how classification and clustering
leads to our new EC2 algorithm. A detailed evaluation of
the classification and clustering algorithms are separately
presented in Section 6 and Section 8 respectively. Section 7
shows how to use classification to automatically character-
ize malware families. Finally, Section 9 compares EC2 with
several existing baselines, including the best classification
and clustering algorithms and shows that EC2 outperforms
all. Section 10 presents conclusions and directions for future
works.

2 RELATED WORK

We identify and discuss three main areas of related work: (i)
malware spread and characterization, (ii) malware analysis
and detection, (iii) prediction of malware families.

Malware spread and characterization. Some broadly
related works predict malware spread [40], [62], evaluate
infection rates and risk indicators [57], characterize of mal-
ware on different third-party Android markets [45] etc.
However, these works do not propose ways to detect/clas-
sify malware into into families.

Malware analysis and detection. Several efforts ( [14],
[15], [41], [44], [54], [61]) focus on malware detection, i.e.,
given a new sample, predict whether it is benign or mali-
cious. Kolter et al. [41] propose an n-gram approach based
on the bytes of malware binaries. Baldangombo et al. [15]
propose an ensemble classifier relying on static features
from Windows malware. Siddiqui et al. [54] compare some
supervised classifiers using static features and achieve best
performance with decision trees. Ye et al. [61] combine
file content and file relations for malware detection. While
these works focus on PC malware, malware detection for
mobile devices [53] has gained much recent attention. Some
works [22], [36], [46], [51] study the effectiveness of existing
antivirus solutions against obfuscation techniques applied
to malware, whereas our main focus in this paper is related
to family prediction algorithms. Some papers [35], [50] pro-
posed distillation and re-training on adversarially crafted
samples to increase classifier robustness against obfuscation;
but this approach has been later shown to be not effec-
tive [23] through a quantitative evaluation. Other works like
DREBIN [14], Crowdroid [21], DroidAPIMiner [11] perform
malware detection through static features of Android appli-
cations, whereas TaintDroid [32] and DroidScope [58] use
dynamic features extracted from execution traces. Droid-
SIFT [63] performs semantics-aware classification based on
control flows. MARVIN [44] proposes a binary classifica-
tion method to discriminate between benign and malware
applications using both static and dynamic features. Ma-
MaDroid [49] builds behavioral models from dynamic logs
through HMM to distinguish between benign and malicious
applications. Unlike malware detection, our paper focuses
on the problem of identifying malware families. Moreover
unlike most past work we present a thorough analysis
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of several supervised classification and unsupervised clus-
tering methods with different combinations of static and
dynamic features.

Prediction of malware families. Several efforts ( [17],
[38], [52], [60]) consider the problem of malware classification,
i.e., given a set of malware samples, identify which samples
are variants of the same malware family. Ye et al. [60]
propose an ensemble based on k-medoids and hierarchical
clustering. Bayer et al. [17] propose a scalable method com-
bining hierarchical clustering and locality-sensitive hashing
on malware execution traces. Rieck et al. [52] propose a
supervised SVM-based approach that clusters dynamic fea-
tures from execution traces. All these works are focused
on traditional PC malware, whereas our focus is on An-
droid [53], an ecosystem that differs from traditional PC
malware in terms of application, sandboxing, resource ac-
cess, and system calls (more details in Section 4.1). Some
recent work tackles the problem of Android malware classi-
fication. [16] proposes a very preliminary model checking
approach to classify malware samples from just 2 families
(OpFake, DroidKungFu) with 100 samples each. We con-
sider 156 families including 47 singleton families with about
5000 samples. Dendroid [56] proposes a text-mining based
method to find similarities in malware families by extract-
ing code chunks and deriving static features from them.
DroidLegacy [30] proposes an approach to detect malicious
code modules, but their focus is explicitly on piggybacked
and repackaged applications. However, these works [30],
[56] have some major shortcomings – they evaluate their
approach only on the outdated MalGenome dataset [6], [64]
(which is only a small subset of DREBIN, consisting of about
20% of the DREBIN dataset samples), and results obtained
with their approach are hard to interpret for a human
security analyst, whereas we automatically identify specific
characteristics that distinguish malware families and which
are easy to interpret. Moreover, past works do not con-
sider small families, which is one of the major strengths
of EC2. In [30] the authors remove all families with ≤ 10
samples, while in [56] the authors remove all singletons
(i.e., families with just one sample) from the analysis. There
are other works related to mobile malware classification.
DroidMiner [59] analyzes fine-grained behaviors of Android
malware applications. DroidScribe [28] considers only dy-
namic features and classifies Android malware into families
to provide a baseline against proposals that focus on static
features. DroidSieve [55] considers only static features – in
particular it proposes a set of features that are resilient to
modern obfuscations strategies. Prescience [29] builds on
DroidSieve and studies periodic retraining of classifiers over
time to adapt to novel obfuscation techniques. However, in
this paper we also consider small and previously unseen
families which are not the main focus of [28], [29], [55],
[59], [63]; in particular, our major contribution is the EC2 al-
gorithm which is very efficient in detecting both very small
(including new malware families) and large families. Andro-
nio et al. [12] propose a method for discriminating between
goodware, scareware and ransomware by generalizing three
key insights of common behaviors in mobile ransomware:
threatening text, device locking, and encryption. Aresu et
al. [13] propose an approach that by extracting features from
HTTP traffic is focused on classificaton of mobile botnets

variants (e.g., Zitmo). However, these works are not generic
since they are targeted to specific objectives (identify which
malware is scareware/ransomware, and identify variants
of mobile botnets samples), whereas we propose a generic
approach that can be applied to any malware family and is
also able to detect singleton families.

As a final remark, it is important to observe that in some
cases the concept of “malware family” may be fuzzy, as
a security analyst may consider that a sample belongs to
more than one family. For example, consider the Petya
ransomware and its more recent variant NotPetya [10],
which antivirus vendors eventually decided to consider as
two distinct families due to their differences in propagation
and operativity. Nevertheless, the detection of small and/or
previously unseen families can also be helpful in the detec-
tion of very different variants of a known family which may
represent an entirely new strain. For the sake of fairness,
all results in this paper refer to the publicly available and
labeled DREBIN [4] and Koodous [9] academic datasets.

3 DREBIN DATASET

We first analyze the DREBIN dataset [4] as it represents the
largest public, labeled mobile malware dataset, as of 2016.
All DREBIN samples (even ones in the same family) are
characterized by different hash values, indicating that some
obfuscation technique [19] has been applied in order to pre-
vent easy detection of variants. As described in Section 4.3.1,
we execute the malware samples in a controlled environ-
ment to extract dynamic features. We only kept dynamic
logs for samples executed for 120 seconds without failures.
In particular, the final dataset used in this paper consists of
4, 845 malware samples: Figure 1(a) reports the distribution
of malware family sizes, and Figure 1(b) reports the top 15
malware families by size, among which: FakeInstaller,
that simulates an installer of Android applications but in re-
ality sends SMSs to a premium-rate service; DroidKungFu
that tries to perform privilege escalation and steals sensitive
data from the device; Opfake that is another malware
family sending SMSs to premium-rate numbers.

The size of Android malware families follows a heavy-
tailed skewed distribution (cf. Figure 1(a)): 112 of 156 fam-
ilies have under 10 samples. This suggests that supervised
classification algorithms might not work well due to lack
of training samples for small families. Hence, we leverage
unsupervised clustering approaches and propose a novel
ensemble method that leverages both classification and clus-
tering.

4 FEATURE EXTRACTION

We first present some fundamentals about the Android
environment, and then describe how we design and extract
static and dynamic features from the samples.

4.1 Android Fundamentals
Android applications (or apk files) are jar-like compressed
files. Android users can install applications from both of-
ficial (Google Play Store) and third-party marketplaces. The
components of each Android application must be declared in
the Manifest file which is a header in each apk. The main
apk components are:
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Fig. 1: (a) Cumulative distribution of the size of malware
families present in the DREBIN dataset (see Supplementary
for the non-cumulative family distribution), (b) top-15 mal-
ware families by decreasing size.

• Activities model the screens and windows that con-
stitute the user interface of an application.

• Services are background processes that remain active
even when the application is out-of-focus (e.g., play-
ing music), and may be used for malicious acts (e.g.,
aggressive advertisement from Adware).

• Content Providers are used to define and regulate data
sharing between applications.

• Broadcast Receivers are used to monitor system-level
events (such as BOOT_COMPLETED, commonly mon-
itored by malware to trigger malicious behavior on
phone startup [14]).

• Intents are messaging objects that can be used for in-
teractions and communication between components.
They are used to invoke actions, e.g., start another ac-
tivity, start a service, or deliver a broadcast message
that can be captured by broadcast receivers.

Each Android application runs in an isolated environ-
ment that is separated from other applications, and by de-
fault it can only write on a separate memory space and can-
not access phone resources (e.g., Camera). To perform more
advanced interactions, Android relies on a fine-grained per-
missions system for which an application has to explicitly
request the user, at installation time, for permission to access
specific software (e.g., access call log) and/or hardware (e.g.,
camera, vibration) resources. This guarantees transparency
about the data that can be accessed by the application (e.g.,
access and modify Calendar or Contact List), although it
is often overlooked by users since the number of permis-
sions may be high. Moreover, it is not trivial to determine
what an application actually does with a permission (e.g.,
when/where an app exactly uses READ_SMS permission to
read text messages inbox). A full set of standard permissions
is available in Android documentation3, but program devel-
opers can also define a set of custom permissions depending
on their needs (e.g., to communicate with other applications
of the same developer).

4.2 Static Features
Several static features have been proposed in the literature
(e.g., [14], [44], [55], [63]). We wanted to develop easy to
extract and explainable static features by leveraging those

3. https://developer.android.com/guide/topics/security/
permissions.html

TABLE 1: Static features derived from the analysis of code
and Manifest in the malware samples in DREBIN.

Group Feature Description

Author author
Derived from SHA256 hash that digitally signs
the Android sample

St
ru

ct
ur

e

filesize The size of the file in bytes
n_activities Num. Activities
n_intents Num. Filtered Intents
n_providers Num. Content Providers
n_services Num. Services
n_receivers Num. Broadcast Receivers

Pe
rm

is
si

on
s

n_std_sw_perm
Num. standard sw permissions required to in-
stall the application

n_std_sw_
_perm_dangerous

Num. std sw permissions marked as dangerous
in Android documentation

n_hw_perm
Num. std hw permissions required to install the
application

n_custom_perm
Num. custom permissions (i.e., non-std) defined
by the application developer

sw permission1
1 if sw permission1 is required by the applica-
tion, 0 otherwise

...
1 if sw permissioni is required by the applica-
tion, 0 otherwise

sw permissionN
1 if sw permissionN is required by the applica-
tion, 0 otherwise

hw permission1
1 if hw permission1 is required by the applica-
tion, 0 otherwise

...
1 if hw permissionj is required by the applica-
tion, 0 otherwise

hw permissionK
1 if hw permissionK is required by the applica-
tion, 0 otherwise

proposed in [14]. Despite [14] extracts static features both
from the Manifest and from the source code (e.g., API calls),
we decided to consider only features from the Android
Manifest4 for three main reasons: (i) features from the code
may introduce overly detailed and noisy information [31],
[36], whereas the Android Manifest already has rich in-
formation about an application and its structure; (ii) the use
of encryption or reflection [46] may easily introduce much
noise in the code, whereas the Android Manifest must be
declared in plaintext and also contains many specifications
about requested permissions and interfaces; (iii) finally, we
consider features that are easy to interpret, so that we can
automatically extract meaningful characteristics that distin-
guish malware families (cf. Section 7 and supplementary
materials).

Depending on their meaning, our static features fall into
three main groups: author, structure and permissions. Table 1
reports the complete list of static features, where the left-
most column reports feature groups.

Author. Malware of the same family may be developed
by the same author. Developer information is usually pub-
lished by marketplaces (e.g., Google Play). However, the
DREBIN dataset also contains applications that have been
removed from the store or that have been retrieved from
third-party marketplaces. We assume that if two applica-
tions are digitally signed with the same certificate, then
they have been developed by the same author. This feature
has not been considered by [14], but in some other related
research (e.g., [55]). Section 7 shows that some families (e.g.,

4. Our static feature set corresponds to the features proposed in [14]
related to the Android Manifest with some modifications: unlike [14],
we also consider the filesize and author of an app (which have
also been considered in [55]); unlike [14], we only consider the number
of application components (e.g., Activities, Services), instead of their
specific class names (e.g., HomePageActivity.class)– this is because
names can be very easily obfuscated, whereas number of components
may not be modified arbitrarily by the malware developer without
raising suspiciousness in malware detectors. We also observe that all
static features in [14] are binary, whereas we also have continuous
static features: author, filesize, number of components, and number of
permissions.
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MobileTx and Opfake) have many samples developed by
the same author – while the author feature is insignificant
for others (e.g., Geinimi, FakeInstaller, JiFake) as the
malware developers were more careful.

Application components. Applications sharing similar
structure may be variants of the same family. We describe
app structure via the number of components found in
the Manifest: filesize, n_activities, n_intents,
n_providers, n_receivers, n_services. As an exam-
ple, the feature n_activities is very significant to dis-
criminate the family Opfake (cf. supplementary materials),
and also for discriminating the various families in the multi-
class classification task (cf. Figure 8). Unlike the feature set
presented in [14], we choose not to consider the names of
the Android components, but rather their counts because
component names can be altered very easily (as they are
just the names of Java classes defined by the application
developer). On the other hand, the number and organization
of components is harder to change significantly without also
improving chances of detection of a sample as malware.

Permissions. The Android permissions system provides
a rich source of features as malware from the same family
may need the same permissions that may help distinguish
them from other families. For example, MobileTx is one of
the few families requiring the RESTART_PACKAGES permis-
sion, that is used to kill antivirus and application monitoring
systems. Sometimes, even the absence of a certain permis-
sion requested by the malware can be useful to discriminate
its family. For instance, FakeInstaller does not need the
ACCESS_NETWORK_STATE permission— this absence is a
strong indicator that a sample belongs to this family. A
predefined set of standard permissions5 label some features
dangerous as they provide access to sensitive resources such
as call logs or contact lists. Our feature set includes binary
vectors as in [14], containing possible standard software and
hardware permissions from the Android official documen-
tation. We also count the number of customized permissions
that can be defined by programmers. As a final remark,
although permission-related features are very important,
they may not be sufficient by themselves for detecting/
classifying some types of Android malware (e.g., in case of
privilege escalation attacks [20]); hence it is fundamental to
consider the other kinds of features presented in this section
as well.

We extract static features with official Android SDK6 tools
and Androguard7, a Python library for extracting metadata
from apk files and their Manifest. We have 190 static
features in all (Author: 1, Application components: 6, Per-
missions: 183).

4.3 Dynamic Features
Since static features alone may not be enough because of
obfuscation techniques [19], we run malware samples in a
sandbox in order to find common behaviors exhibited by
families [52]. We first describe generation of dynamic logs,
then design and motivate extraction of dynamic features.

5. https://developer.android.com/guide/topics/security/
permissions.html

6. https://developer.android.com/studio/
7. https://github.com/androguard

4.3.1 Generation of Malware Dynamic Logs
We installed and configured the official Android emulator8,
a fully-functional Android system that runs applications
with a graphical user interface. We also used inetsim9,
a tool that simulates many network services, and also pro-
vides realistic data in response to malware requests (e.g.,
if a malware tries to download an executable file from an
external website). This allows us to log the most relevant
malware Internet requests of the malware, despite absence
of real Internet connectivity. To run the malware samples,
we use DroidBox 4.1.110, an open-source sandbox es-
pecially tailored for dynamic malware analysis of Android
applications. DroidBox can install and execute apk applica-
tions in the Android emulator. For each malware sample in
DREBIN/Koodous, we execute the malware for 120 seconds
and log all its activities through DroidBox, which include:
file system activities (read/write), network activity (send-
net/recvnet), usage of cryptographic primitives, dynamic
loading of classes, start of new services (background pro-
cesses), generation of system events. We did not use simu-
lated user input because: (i) a random input simulator would
prevent deterministic code execution, which is important for
malware classification; (ii) designing a deterministic input
simulator to be run on all applications would be a huge
challenge as many malware applications crash often.

fdaccess: {
1.9002759456634521: {
data: 541545301efbfbd7a2a57,
id: 1590266696,
operation: write,
path: /data/com.app/stats.log,
type: file write},...
}

(a)

sendsms: {
12.9806270599365234: {
message: "Thanks for
downloading Xmas walls!",
number: <phone-number>,
type: sms },
...
}

(b)

Fig. 2: Example of (a) write-log and (b) SMS activity log
generated by DroidBox.

Figure 2(a) shows a sample Droidbox log of a filesys-
tem write operation, where about 1.9s after starting
the execution of the malware, some data is written in
/data/com.apsp/stats.log. The “data” field in Fig-
ure 2(a) contains the data written by the application in
hexadecimal format. Figure 2(b) shows another sample log
related to SMS sending activity. Many malware try to de-
ceptively send SMSs to premium-rate numbers owned by
the malware developer in order to get money from the
user. Sometimes, SMSs are also used to spread the malware
by sending a text to users from a contact list to deceive
them into clicking a malicious URL. Details of the dynamic
log generation process can be found in the supplementary
materials.

4.3.2 Dynamic Feature Extraction
Our goal is to design features that capture similarities in
malware behaviors in order to classify samples into fami-
lies. Dynamic logs allow us to even design very low-level
features, such as read operations on specific data from files

8. https://developer.android.com/studio/run/emulator.html
9. http://www.inetsim.org
10. https://github.com/pjlantz/droidbox
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TABLE 2: Dynamic features derived from the execution of the Android malware samples using bag of words.

Group Feature Description

RW read [[<basepath>] [<filename>]]
N -gram counts about read operations on the Android filesystem. The basepath
is just the name of the first folder after the root

write [[<basepath>] [<filename>]]
N -gram counts about write operations on the Android filesystem. The basepath
is just the name of the first folder after the root

System

servicestart [<servicename>] N -gram counts about started background processes (i.e., services)
load [[<classpath>][<classname>]] N -gram counts about dex Android classes loaded during execution
crypto [[<algorithm>] [<encryptionkey>]] N -gram counts about crypto operations performed during execution
recvsaction [[<path>] [<name>]] N -gram counts about event listeners (e.g., BOOT_COMPLETED)

Network sendnet [[<protocol>] [<port>]] N -gram counts about outgoing network activity
recvnet [[<protocol>] [<port>]] N -gram counts about incoming network activity

SMS sendsms [[<phonenumber>] [<message>]] N -gram counts about sms sent by the application

and folders at particular timestamps. However, past work
shows that overly detailed dynamic features rarely im-
prove malware classification [28], [31] as they inject noise.
We therefore leverage an n-gram representation commonly
used in malware analysis and classification (e.g., [18], [31],
[33], [52]). Using n-grams, we count the following operations
captured by the sandbox: RW (read and write operations),
System (e.g., start of a new background process), Network
(Internet requests), SMS (texts sent by the device). For each
dynamic log operation, we extract several possible sets of
words to limit the impact of possible obfuscation strategies
adopted by the attacker (e.g., changing the filename of a
written file). For this purpose, we consider a bag of word
approach in which we extract n-gram counts. In particular,
we have experimentally verified that considering n-grams
with n > 3 does not yield any performance improvement
(because the level of details increases and features become
too specific, as discussed in [28], [31]), so we consider
unigrams, bigrams and trigrams. Each word is a feature,
where the value is represented by the number of occurrences
of that keyword in the logs [52]. The idea is that similar
malware execute similar types of operations.

To clarify how the bag of words for dynamic features
are extracted, consider an example based on the write log
of Figure 2(a). Since we consider up to 3-grams, we can
extract the following four words from this log: (i) write,
(ii) write /data/, (iii) write stats.log, (iv) write
/data/stats.log. The first word corresponds just to the
name of the executed operation. In the second word, we
extract only the basepath /data/ instead of the fullpath
/data/com.app/ (i.e., the first folder name in the path,
in addition to the root folder) because most Android folders
are dependent on Application names (e.g., com.app in the
example) or process ids, but the basepaths are unique [31].
We do not include the content written – we verified that it
is not useful for malware classification, as many malware
read files in different sequences (e.g., a 256 byte file read 1
or 2 bytes at a time), and also use encryption strategies to
hide the real read/written content. Note that feature values
represent number of occurrences of a word in the dynamic log
of the malware sample.

We can then define a generalized version of a write
operation feature set as follows:

write
[
[< basepath >] [< filename >]

]
(1)

where items between squared brackets are optional (hence,
if one considers all the possible combinations she can obtain
four words).

Table 2 reports the full list of dynamic feature types
extracted with the bag of words approach. The rationale

behind the design of these features is to capture similarities
in malware behaviors by counting the number of high-level
actions of each sample [31]. Section 7 shows that dynamic
features are effective in characterizing different malware
families (cf. supplementary materials): for example, Opfake
loads a malicious apk in memory at runtime through
the dexclass loading function; MobileTx sends SMS to
premium-rate numbers; Geinimi starts a fake background
process called GoogleKeyboard that collects user informa-
tion that are then sent outside.

Note that since we always consider 1-gram counts con-
sisting of just the operation (e.g., write, read), our ap-
proach also captures the total number of dynamic opera-
tions of each kind executed by a malware.

By executing DREBIN malware samples, we collect
6, 875 dynamic features corresponding to the set of possible
words of Table 2. We then drop all the features that have
value 0 (i.e., never occurred) for all malware samples except
one. In other words, we drop all n-grams executed by just
a single malware sample in the dataset – as they do not
contribute to the malware classification task; thus we are
left with 2, 048 dynamic features.

5 DISCOVERING ANDROID MALWARE FAMILIES

5.1 Supervised Classification
We consider six standard supervised classifiers – Decision
Tree (DT), K-Nearest Neighbors (K-NN), Logistic Regression
(LR), Naive Bayes (NB), Support Vector Machine (SVM),
and Random Forest (RF). We perform hyper-parameter op-
timization in order to find the parameters that generate the
best results. For instance, we use CART with Gini gain crite-
ria for DT; K-NN method with K = 5; multinomial logistic
regression and SVM with linear kernel. Section 6 shows
that Random Forest turns out to be the best classifier in
general, buts fails to capture small families. This motivated
us to run unsupervised clustering algorithms with the hope
that interdependency between malware samples captured
via clustering might help in detecting small families.

5.2 Unsupervised Clustering
We consider five well known clustering methods previously
used in malware analysis: [17], [26]: DBSCAN, Hierarchical
with complete linkage and Euclidean distance, Affinity, K-
Means and MeanShift. The value of K in K-Means was
determined by the Silhouette Method. Other parameters
were systematically tuned to get the best performance.

Section 8 shows that DBSCAN turns out to be the best
clustering algorithm. Although it accurately captures small
families, its overall performance is significantly worse than
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the best classification algorithm. This further motivates us
to combine both the results of classification and clustering
in a systematic way to improve the overall performance as
well as to detect small families.

5.3 EC2: Combining Classification and Clustering
Section 6 will show that while classification methods per-
form well on families with at least 10 samples, they fail
to predict small families effectively. On the other hand,
clustering methods efficiently capture small families. To
get the best of both worlds, we propose EC2 (Ensemble
Clustering and Classification) which combines the results
of classification and clustering in a systematic way (see
Algorithm 1).

In the initial steps, EC2 uses an unsupervised clustering
method Auc to cluster all the samples (Step 1). In parallel,
it trains a supervised classifier Asc on training set TR (Step
2) and measures the membership probability of each test
sample for each family (Step 4). If a test sample achieves
a maximum membership probability greater than a certain
threshold δ1, it is assigned to the corresponding family
(Step 8); otherwise it is marked as “unlabeled” (Step 10).
In Section 9.2, we vary the value of δ1 and observe that the
highest accuracy is obtained with δ1 = 0.6. For each such
unlabeled sample s, EC2 first checks the cluster Cs where
it is assigned by Auc (Step 13). If more than δ2 fraction of
the constituent members in Cs have already been labeled
with a single family f , then s is labeled with f (Step 15);
otherwise s is labeled with a new family Cs. Note that in
this step if there is a tie in the size of the classes inside
the cluster Cs, we by randomly assign the sample into one
of the majority classes11. Moreover, Step 17 enables us to
create a completely new family which may not be present
in the training set, thus allowing us to identify completely
unobserved families.

Illustrative Example: Figure 3 shows an example of EC2
in action. Suppose there are six samples O1, · · · , O6. A
classification algorithm Asc classifies the samples with a
probability distribution as shown in Figure 3(a). If δ1 = 0.7,
then samples O1 and O3 are assigned to class C1 because
the membership probability of both these samples is above
0.7 (Figure 3(b)). No other samples are assigned to a class
due to the lack of high confidence. Therefore, we run a
clustering algorithm Auc that may group them into three
clusters G1, G2, G3 (Figure 3(c)). For the unassigned sam-
ples we use the clustering results as follows. For instance,
in the case of O2 we see that it belongs to cluster G1,
and there are two other samples O1 and O3 which also
belong to G1. Now, out of 3 samples in G1, two are already
labeled as C1 from the classification result, i.e., more than δ2
(which is set as 0.6) fraction of samples in G1 are labeled as
C1. Therefore, O2 is also assigned to C1. However for O5
and O6 which belong to G2 and there is no other member
labeled earlier, we assign them separately in a class G2.
Similarly O4 is assigned to a singleton class G3.

Time Complexity: Assume that there are n malware
samples and f families in the test set. Once we obtain
the results of the classification and clustering algorithms,

11. Note that if δ2 is greater than 0.5, there is no possibility that a tie
is encountered.

Input: Training set: TR, test set: TS, thresholds: δ1 and δ2,
Classification algo: Asc, Clustering algo: Auc

Output: Labeled families of TS
1 Run Auc on TR+ TS and obtain set of clusters C;
2 Train Asc on TR;
3 for each s ∈ TS do
4 MP [s, f ]←Membership probability of s in family f

obtained from Asc;
5 mp∗ ← max

∀f
MP [s, f ];

6 f∗ ← argmax
f

MP [s, f ];

7 if mp∗ ≥ δ1 then
8 L[s]← f∗; . Assigning family label of s
9 else

10 Push(UnlabeledS, s) . Push s into UnlabeledS
11 while UnlabeledS is not empty do
12 s← Pop(UnlabeledS);
13 Cs ← Cluster of s (where Cs ∈ C);
14 if More than δ2 fraction of the samples in Cs are labeled with a

family f then
15 L[s]← f ;
16 else
17 L[s]← Cs;
18 return L;

Algorithm 1: EC2 algorithm

Fig. 3: An illustrative example EC2. Six samples O1, · · · , O6
are finally grouped into three clusters C1, G2, G3.

for each sample it takes O(f log f) time to obtain the
maximum membership probability. Therefore, the total time
required to execute Steps 3-10 is O(nf log f). Further if
we assume there are on average nc samples per cluster,
the worst case total cost incurred by EC2 in Steps 11-17
is O(n.nc) ∼ O(n2). However, in practice nc � n, which
implies thatO(n.nc) ∼ O(n). So the overall worst-case time
complexity is O(n+ nf log f) ∼ O(nf log f).

6 PERFORMANCE OF SUPERVISED CLASSIFIERS

In this section, we provide the performance of the classifiers.
We start with the metrics used to evaluate the performance
of the classifiers, followed by a comparative evaluation.
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6.1 Evaluation Metrics

As the size distribution of malware families is highly
skewed (cf. Figure 1(a)), we examine the performance of
the classifiers at Macro (Ma) and Micro (Mi) levels. At each
level, we consider Precision (P), Recall (R), F-Score (F) and
Area under the ROC curve (AUC). At micro (resp. macro)
level, Precision, Recall and F-Score are denoted as MiP, MiR
and MiF (resp. MaP, MaR and MaF) respectively. Each of
such metrics ranges from 0 (no match) to 1 (exactly similar).

We recall how Micro and Macro statistics are computed
for evaluating multi-class classifiers. Given a classifier and
a malware family i, we let TPi, FPi and FNi indicate
True Positive, False Positive and False Negative samples,
respectively. Then, for n different families, Micro Precision
(MiP) and Macro Precision (MaP) are:

MiP =

∑n
i=1 TPi∑n

i=1 TPi + FPi
(2)

MaP =

∑n
i=1

TPi

TPi+FPi

n
(3)

We also observe that micro statistics suppress the results of
small clusters over those of large clusters.

6.2 Performance Analysis

We observe that Random Forest (RF) achieves the highest
overall classification accuracy after 5-fold cross-validation12

(see Supplementary Materials for the performance of the
other classifiers). RF yields a MaF=0.65 and MaAUC=0.83,
and MiF=0.93 and MiAUC=0.97 averaged over 50 itera-
tions for all families (including the ones with less than 10
samples). Small families lead to lower values for macro
statistics because these are difficult to predict due to the
lack of training data. Performance of small families will be
separately discussed in Section 6.4. For now, we consider
only families with size ≥ 10 (44 families, 4545 samples).

Composite Performance: Figure 4(c) shows performance
of all classifiers on families of size ≥ 10 considering both
static and dynamic features. For better visualization we
adopt the setup used in [25] – for each evaluation metric
(such as MiF, MaF, MiAUC, MaAUC), we separately scale
the scores of the methods so that the best performing
method has a score of 1. The composite performance of
a method is the sum of the four normalized scores. If a
method outperforms all other methods, then its compos-
ite performance is 4 (See Supplementary Materials for the
actual performance value of the classifiers).

Figure 4(a) shows the composite performance of all
the classifiers for different feature sets. Considering both
static and dynamic features, Random Forest outperforms
all others (with composite performance of 4), followed by
DT (3.92), K-NN (2.24), SVM (2.15), NB (1.99) and LR (1.94).
The superior performance of DT corroborates the results in
[15], [41] for separating malware from benign applications
and might be due to the categorical features such as author,
structure and permissions. As described in [24], K-NN and

12. We consider 5-fold over 10-fold because the former handles folds
with less than 10 samples in our training data. It is required because in
our dataset small families are the prevalent families.

DT are extremely useful when the features are categorical
and/or a mixture of continuous and categorical. This might
also explain the poor performance of SVM. Figure 4(b)
presents the relative performance of the classifiers by indi-
vidually considering dynamic features and both static and
dynamic features together w.r.t. the performance with only
static features (which were used in most previous mobile
malware classification research [30], [34], [56]).

Figure 4(b) reports that for all classifiers the relative
performance exceeds one in most cases, showing that dy-
namic features improve classification accuracy compared to
static ones. Although the relative performance of K-NN, LR,
NB and SVM is higher with only dynamic features, among
all classifiers the best absolute performance is achieved by
Random Forest with both static and dynamic features (Fig-
ure 4(c)). Moreover, Section 7 will show that adopting both
kinds of features is also extremely useful in distinguishing
characteristics of each malware family. Therefore, unless
otherwise mentioned, we will present results that include
both static and dynamic features and that refer to the best
classifier (RF).

Family-wise Performance: To understand the detailed
results of the classifier, Figure 5 shows the family-wise
accuracy of Random Forest, the best classifier. We consider
all the detected (resp. ground-truth) families, sort them by
descending order of size, and plot the Precision (resp. Recall)
for the families with at least 10 samples in Figure 5(a)
(resp. Figure 5(b)). We observe high Precision irrespective
of family size, whereas Recall drops slightly for smaller
families. The small performance drop at bin 5 for both
Precision and Recall is caused by two malware families,
Boxer and SMSreg, that have some hard-to-detect variants.

6.3 Prediction of Unknown Families

Thus far, out of total 4, 845 samples we have considered
4, 545 samples belonging to 44 large families (families with
at least 10 samples). However, there are 300 other malware
samples present in a total of 112 small families. In this ex-
periment, we treat these 300 malware samples as “unknown
malware samples”. In particular, out of 4, 545 samples (with
size greater than 10) we randomly choose 4, 245 samples for
our training set (set I). Two test suites are prepared for this
experiment: (i) Set II: the remaining 300 samples from large
families out of 4, 545 sample set, (ii) Set III: 300 unknown
malware samples (belonging to 112 small families) whose
representatives are absent in the training set. The classifiers
are trained on Set I to predict samples in Set II and Set III.
The experiment is repeated 50 times to see how the classifier
performs especially for Set III. We wish to show that a
standard classifier should identify the family of a sample
with high confidence if the malware belongs to one of the
given families. However, if it does not belong to a known
family, the classifier should assign it to a known family with
low confidence.

We use Random Forest with all (static and dynamic)
features to estimate the probability of each test sample be-
longing to different families. Figure 6(a) shows that Random
Forest with the proposed feature set is very confident in
labeling Set II (the maximum probability is greater than 0.80
for the great majority of test samples; and MaF and MiF
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Fig. 4: Performance for families having ≥ 10 samples averaged over 50 iterations with 5-fold cross-validation on the
DREBIN dataset. (a) Composite performance of the classifiers; (b) relative improvement (in terms of Micro AUC) of the
classifiers with respect to their performance with only static features (the horizontal dotted red line indicates that both
the performance are equal); (c) absolute values of the metrics for all the classifiers considering static and dynamic features
together.
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Fig. 5: Family-wise accuracy (mean values of (a) Macro Pre-
cision (MaP) and (b) Macro Recall (MaR) and their variance)
of Random Forest (RF) with static and dynamic features
on the DREBIN dataset. The families are grouped in bins
and sorted by descending order of their size. The results are
obtained with 5-fold cross-validation and averaged over 50
iterations. The small drop in bin 5 is caused by Boxer and
SMSreg families, that have variants harder to detect.

(a) 

Family (sorted in decreasing order of membership probability)
2 4 6 8

M
al

w
ar

e 
In

st
an

ce

50

100

150

200

250

300

(b)

2 4 6 8

50

100

150

200

250

300 0

0.2

0.4

0.6

0.8

1

Fig. 6: Family membership probability of test samples (300
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families (Set III)) obtained from Random Forest with static
and dynamic features on the DREBIN dataset. For better
visualization, we plot top 10 most probable families per
test sample and sort families based on descending order of
membership probability.

are 0.96 and 0.91); whereas in Figure 6(b) it is extremely
erratic in predicting the labels of Set III. As we have seen in
Section 5.3, this behavior of the classifier has been leveraged
to design the EC2 algorithm.

6.4 Performance for Small Families
Thus far, we have primarily considered 44 families with size
≥ 10. However, there are 109 families that have size ≥ 2,
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Fig. 7: Performance of Random Forest (RF) for families
with different sizes, averaged over 50 iterations with 2-fold
cross-validation on the DREBIN dataset. We compare the
performance of RF considering only small families (having
size less than x, where 5 ≤ x ≤ 50) with large families
(having size ≥ 10).

and each of the remaining 47 families has only one sample
(singleton families).

We now consider all the families of size ≥ 2 and adopt
a 2-fold cross validation using stratified sampling so that at
least one sample per family is present in the training set. The
experiment is repeated 50 times and the average accuracy
is reported. We separately measure class-wise performance.
Figure 7 shows the performance of Random Forest for
families of size less than x (5 ≤ x ≤ 50) in order to see how
the classifier performs on such heavily skewed families.

We compare this performance with the performance
obtained earlier in Figure 4 for families with at least 10
malware samples. Figure 7 shows that the performance of
the classifier drops significantly if we consider only small
families in the test set - not surprising due to the small size
of the training set. Moreover, although Section 6.3 shows
that for samples belonging to unknown families Random
Forest is erratic in assigning them into known families, it
is not possible for a classifier to identify completely un-
known families. This means that singleton families cannot
be identified by classifiers. However, because of the huge
daily growth in malware variants, it is critical to identify
malware families as soon as an application has been de-
tected as malware. This motivates us to study unsupervised
clustering algorithms, as presented in Section 8.

7 CHARACTERIZING SOME MALWARE FAMILIES

A security analyst needs both an accurate predictor and to
understand which features discriminate between different
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malware families. These findings are useful in engineering
robust signatures for detection of new malware variants.
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Fig. 8: Top 25 discriminative features of Random Forest
multi-class classifier for the DREBIN dataset. Static and
dynamic features are represented as yellow and blue bars,
respectively.

Figure 8 reports the top 25 features by decreasing classi-
fication weight for the Random Forest multi-class classifier,
with static features in yellow and dynamic features in blue
(see Table 1 and Table 2 for detailed features description).
We see that static features are more importang than dy-
namic ones, probably because Android applications have
a rich set of information in their Manifest (i.e., XML-
header), making it more challenging for malware authors
to create hugely different variants. Figure 8 shows that the
most relevant static features are about custom permissions,
that can be used for interactions and data sharing between
applications with the same author/signature. filesize is
also relevant, suggesting that variants of the same malware
often share similar size distributions. Another important
feature is author, because malware authors might reuse
the same signature to publish many variants of their mali-
cious applications on multiple markets. The most important
dynamic features include the number of write operations
on the filesystem and read cpuinfo, i.e. the number of
read operations of CPU characteristics (to learn details of
the device hardware to determine possible exploits). The
receiver for BOOT_COMPLETED signal is also a top feature
– it is often used by malware developers to determine
when the device is turned on in order to trigger malicious
behavior [14].

Malware family characterization: Apart from the over-
all discriminative features obtained from the multi-class
classification, it is interesting to identify the specific features
that characterize and distinguish each malware family from
the rest. To this end, we design the following experimental
setup – for each of the 44 large malware families, we learn
the best binary classifier (Random Forest) to distinguish each
family from the rest, such that there exist 44 set of classifica-
tion rules that separate the behavior of one malware family
from all others. In this way, for each family we can sort the

features by decreasing weight learned by the classifier, thus
ranking the features that are more relevant for classification.

Figure 9 shows relevant examples of the top 3 features
for families of different sizes.13 Each row in Figure 9 corre-
sponds to a different family. Each histogram reports feature
values on the X-axis, and the percent of malware samples
having that feature value on the Y -axis. We report results
about the following families14:

• FakeInstaller pretends to be an app that installs
(or uninstalls) other apps from the system, whereas
its primary purpose is to send premium-rate SMS
without user consent.

• MobileTx is a Trojan that both steals information
and also tries to send premium-rate SMS.

• Geinimi is a Trojan that opens a backdoor to send
information from the device to a remote server.

Though some of these families share similar gs (e.g., sending
premium-rate SMS), each of them is characterized differ-
ently through the top 3 features shown in Figure 9.

FakeInstaller. (discovered in May 2012 [5]) The top 3
features in FakeInstaller are static (see first row of Fig-
ure 9). The first feature is related to a permission accessing
the network state (i.e., whether a connection is available or
not on the device at a given time). This feature is impor-
tant for discriminating FakeInstaller as it is one of the
few malware families that does not require it (i.e., where
permission ACCESS_NETWORK_STATE is set to 0, as can be
observed in Figure 9). The filesize of FakeInstaller
samples is usually lower than the other families. Moreover,
the recvsaction DATA_SMS_RECEIVED is used to mon-
itor whenever an SMS is received, and is probably used by
FakeInstaller to remove evidences of its texts sent to
premium-rate number and to abort or delete incoming SMS.

MobileTx. (discovered in May 2012 [5]) The second row
of Figure 9 reports the top 3 distinguishing features of
the MobileTx family, an SMS-fraud malware. The most
important feature involves sendsms activity to the follow-
ing phone number: 1065-71090-88877. This turns out to
correspond to a premium-rate number used to steal money
from the victim [37]. We discovered 68 premium numbers
used by DREBIN samples. Some of these texts also have pre-
determined text content which is captured by our dynamic
analysis. Moreover, all variants of MobileTx require the
RESTART_PACKAGES permission that allows the malware to
kill all processes including monitors and antivirus software
installed in the device. The histogram in Figure 9 shows that
some other malware families (blue bar) also require this per-
mission for the same purpose, but it is not common. Finally,
all 21 variants of MobileTx have the same author=443
(that is the anonymized integer for the SHA256 signature),
and hence this feature also helps identify this family.

Geinimi. (discovered in Dec 2010 [5]) Geinimi variants
steal information such as fine location, device IDs (e.g.,
IMEI, IMSI) and the list of installed apps. Its top 3 distin-
guishing feature value distributions are shown in the last

13. The average F-score for the binary classification is even higher
than multi-class classification, and is reported in supplementary mate-
rials.

14. See supplementary materials for top 5 features and explanations
of three other families.
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Fig. 9: Feature value comparison between malware families present in the DREBIN dataset. In particular, we report
the histogram of the top-3 feature values for the following malware families (number of samples within parenthesis):
FakeInstaller (883), MobileTx (21), Geinimi (13). (More families in the supplementary materials). Each row corresponds to
a family, and the feature value is compared against all other malware families in the dataset.

row of Figure 9. The first feature is associated with the
registration of AdServiceReceiver, a component used
to monitor system events on which to trigger malicious
behavior (e.g., to send stolen data to remove server). The
crypto operations identified in the top 3 features use the
DES algorithm to decrypt URLs of the CnC servers and
GET commands which are encrypted to avoid static code
analysis, but the malware authors recycled decryption keys
and hence we detected them during dynamic analysis. The
permission MOUNT_UNMOUNT_FILESYSTEMS is used to ac-
cess data in SD card slots, as some variants of Geinimi use
SD cards to store and load repackaged malicious applica-
tions download from the CnC servers. The servicestart
GoogleKeyboard represents the launch of a background
process named GoogleKeyboard (to avoid user detection
by looking at the phone task manager) that performs mali-
cious actions, steals information periodically and sends it to
the CnC whose URLs are decrypted at runtime.

Finally, some families are better distinguished using
static features (e.g., FakeInstaller), whereas others
are better distinguished through dynamic features (e.g.,
MobileTx). These statistics can be used by security analysts
to define new signatures for malware classification as they
automatically reveal some internals of the code obfuscation
techniques adopted for a certain malware family.

8 PERFORMANCE OF CLUSTERING ALGORITHMS

In this section, we start by explaining the metrics used
to evaluate clustering algorithms followed by a detailed
performance evaluation.

8.1 Evaluation Metrics
We compare the detected clusters with the original families
in terms of 5 well-known metrics: Micro F-Score (MiF*),

Macro F-Score (MaF*), Normalized Mutual Information
(NMI) [27], Adjusted Rand Index (ARI) [39] and Purity (PU)
[47]. For MiF*, MaF*, NMI and PU (resp. ARI), the value
ranges between 0 (resp. -1) and 1 where 0 (resp. -1) refers
to no match with the ground-truth and 1 refers to a perfect
match. Note, the definitions of Micro and Macro F-Scores
for clustering are slightly different from the ones for the
classification. They are defined as follows.

Given N samples and a detected cluster i with size ni,
True Positive (TPi) denotes the number of pairs (out of
niC2) in which both samples belong to the same ground
truth family; if not, they are counted as False Positive
(FPi). Similarly, True Negative (TNi) counts the number of
pairs that are outside cluster i, and that belong to different
detected clusters j and k (i, j, k are mutually different),
for which both samples belong to different ground-truth
families. Once FPi,TPi,TNi are computed for all detected
clusters i, the calculation of MiF* and MaF* is the same as
MiF and MaF (see Section 6.1).

8.2 Performance Analysis

We consider all malware samples in 156 families. Since clus-
tering methods may produce different outputs depending
upon the parameter settings and the initial seed selection,
we run each clustering method 50 times, and the average
performance is reported. Figure 10 shows the composite
performance (as discussed in Section 6.2) of all the cluster-
ing methods (see Supplementary Materials for the actual
performance values). Among all, K-Means performs the
best. Figure 10(b) shows the relative performance of the 5
clustering methods using both static and dynamic features
as compared to static features alone. Unlike classification,
dynamic features alone do not improve performance. In
3 out of 5 cases, the combination of static and dynamic
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Fig. 10: (a) Composite performance of the clustering methods; (b) relative improvement of the clustering methods w.r.t.
their performance with only static features; (c) number of clusters detected for different feature sets; (d) absolute value of
the metrics for the clustering methods after considering both static and dynamic features together on the DREBIN dataset.

features leads to an improvement over using static features
alone. This suggests that static features are more important
than dynamic features in clustering malware. Figure 10(c)
shows the number of clusters generated by each method
using both static and dynamic features. Figure 10(d) sum-
marizes the accuracy of different methods using both static
and dynamic features. Overall, the performance of K-Means
averaged over all the evaluation metrics is 0.41, followed
by DBSCAN (0.39), Affinity clustering (0.37), Hierarchical
(0.29) and MeanShift (0.26). This is in sharp contrast with
the results reported in [17] where hierarchical clustering
yielded the best results for PC malware. A closer inspection
of Figure 10 reveals that DBSCAN dominates others in terms
of Micro and Macro F-Score values. The reason might be
that DBSCAN correctly identifies True Positives for each
cluster/family which information theoretic metrics (such as
NMI, ARI) often ignore as pointed in [43]. Moreover, the
latter metrics do not penalize clusters with large cardinality
and tend to prefer a small number of large clusters (which K-
Means produces as shown in Figure 12(a) later). Moreover,
K-Means does not capture small families. We now discuss
how the clustering methods detect small families.
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*
)

(M
a
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*
)

Fig. 11: Family-wise accuracy (mean values of (a) Precision
and (b) Recall and their variance) of DBSCAN with static
and dynamic features for the DREBIN dataset. The families
are sorted in descending order of the size. The results are
averaged over 50 iterations.

Family-wise Performance: Figure 11(a) shows that ir-
respective of the size of the clusters detected, DBSCAN
achieves better Precision than K-Means. Moreover, Figure
11(b) shows that the DBSCAN’s recall is almost double that
of K-Means. These results emphasize the fact that DBSCAN
accurately captures the skewed size distribution of Android
malware families.

Performance for Small Families: Figure 12(a) shows the
cumulative distribution of the cluster size obtained from
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Fig. 12: (a) Cumulative distribution function (CDF) of the
size of the clusters detected by different methods on the
DREBIN dataset. The Chi-square correlation of the CDF
obtained from each method with that of ground-truth is re-
ported in the figure legend; (b) performance of the clustering
methods for the small clusters/families having size less than
x (10 ≤ x ≤ 50).

different methods as well as that obtained from the ground-
truth families. DBSCAN produces the distribution which is
closest to ground-truth in terms of Chi-square correlation
(0.95). To identify which method best detects small families,
we measure the performance for those clusters/families
having size less than x (x varies from 10 to 50). Figures 12(b)
and 12(c) show that DBSCAN is the best. Interestingly, all
clustering methods seem to be quite consistent in the small
zones. These results highlight the necessity of adopting
clustering methods for identifying small malware families.

Singleton Families: For singleton families, DBSCAN
and K-Means seem to be the best and the worst methods
respectively. The Precision (Recall) of the clustering meth-
ods for detecting only singleton families are: DBSCAN:
0.33 (0.13), Hierarchical: 0.22 (0.07), Affinity: 0.06 (0.11),
MeanShift: 0.02 (0.05) and K-Means: 0.002 (0.004). The
detection of singleton families is very important and hugely
challenging (due to lack of training data) because these
identify potentially new types of malware that may need
new anti-malware signatures.

8.3 Feature Importance
We identify the most important features in clustering by
measuring the percentage decrease in accuracy (in terms
of MaF*) when each feature is dropped. Figure 13 reports
results for DBSCAN, where the most important feature
groups are D:System, S:Author and S:Permissions. Recall
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from Figure 10(b) that combining static and dynamic fea-
tures performs well, but dynamic features alone perform
worse than static features. This differs from the classifica-
tion results shown in Figure 4(b) where dynamic features
are extremely important. Thus both types of features are
important.
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Fig. 13: Average performance (MaF*) decrease per group
of static (S) and dynamic (D) features (DBSCAN) on the
DREBIN dataset.

To better understand the results in Figure 13, let us look
at the top 5 static and dynamic features in Table 3, along
with their overall ranking (obtained by sorting for decreas-
ing performance loss). Most of the top 5 dynamic features
are related to dexclass operations, that correspond to
the loading of particular Android classes during execution.
Further inspection reveals that the first dynamic feature
corresponds to a class loaded by 10 samples (out of 17) of
the FakePlayer malware family, which is a Trojan that tries
to send premium-rate SMSs. Table 3 suggests that very spe-
cific dynamic features (such as dexclass <class-name>)
are used by DBSCAN to discriminate clusters. Therefore,
samples with very similar features are grouped into reason-
ably small clusters, which are not allowed to grow further,
resulting in high Precision and low Recall. The most relevant
static features are related to Android permissions, such as
those to access GPS location, Internet, send SMS or write to
external storage. The author is fifth in terms of importance,
meaning that it plays a significant role in unsupervised
clustering approaches to grouping malware.

TABLE 3: Top 5 features each from static and dynamic set
with their overall ranks (OR), sorted by decreasing perfor-
mance loss of the DBSCAN method for the DREBIN dataset.

OR Static Feature OR Dynamic Feature

2
perm:
ACCESS_COARSE_LOCATION

1
dexclass org.me.
androidapplication1-1.apk

8 perm:INTERNET 3
dexclass
ru.jabox.android.
smsbox.lovebox-1.apk

10 perm:SEND_SMS 4
servicestart
PlayerBindService

11 perm:READ_PHONE_STATE 5
dexclass
ru.jabox.android.
smsbox.jokebox-1.apk

12 author 6
dexclass
com.agewap.soft-1.apk

9 PERFORMANCE OF EC2

In this section, we present the performance of EC2. We start
by explaining the baseline methods (Section 9.1), followed
by a detailed comparative evaluation: Section 9.2 reports
results on DREBIN dataset [4], Section 9.3 reports results on
the more recent Koodous academic dataset [9].

9.1 Baseline Methods

We consider the following five methods as baselines: (i) best
standalone classifier (Random Forest), (ii) RHWDL: an SVM
based classification of malware behavior [52], (iii) HHC:
an ensemble-based hybrid hierarchical clustering [60], (iv)
DroidLegacy: an existing algorithm specifically designed
for Android malware family classification [30], (v) K2: an
ensemble approach where clustering results are used as
features for classification [42]. While methods (ii), (iii) and
(iv) were applied on malware datasets, method (v) was used
for text classification. K2 turned out to be the best baseline.

TABLE 4: Performance of the baseline methods and EC2 on
the DREBIN dataset. We consider Random Forest (RF) and
different clustering methods separately with δ1 = 0.6 and
δ1 = 0.5. The best baseline and the best combination for
EC2 are highlighted.

Method MiF∗ MaF∗ NMI ARI PU

Ba
se

lin
es RF (Standalone) 0.63 0.84 0.63 0.13 0.41

RHWDL [52] 0.53 0.81 0.60 0.09 0.41
HHC [60] 0.68 0.79 0.59 0.08 0.39
DroidLegacy [30] 0.67 0.82 0.62 0.09 0.35
K2 [42] 0.72 0.89 0.63 0.11 0.42

E
C
2

RF+Hierarchical 0.71 0.94 0.69 0.14 0.47
RF+Affinity 0.69 0.91 0.69 0.69 0.46
RF+K-Means 0.67 0.90 0.70 0.14 0.47
RF+MeanShift 0.73 0.93 0.68 0.14 0.46
RF+DBSCAN 0.76 0.97 0.67 0.14 0.48

9.2 Experimental Results on DREBIN

We consider the entire DREBIN dataset, randomly divide it
into 5 folds and predict the families for each fold separately.
The following experiment is repeated 50 times and results
are averaged.

We assume that each test sample si ∈ TS appears one
by one and independently of other test samples. We always
use the old and reliable training set TR to classify new test
samples si, instead of augmenting with a newly classified
sample15. If si is classified into one of the existing classes,
we keep si aside because other representatives of this class
are already present in the training set TS. If si is classified
into a completely new class, we use this information in a
systematic way. When the next test sample si+1 appears
and is classified into a new class by the classifier (trained on
TS), there are two possibilities – (i) either si+1 belongs to the
same class si belongs to, or (ii) si+1 forms another new class.
We then augment si and si+1 into TS and run the clustering
algorithm on TS ∪ {si, si+1}. If both of them are clustered
together, we assign them same class label; otherwise we
keep them separately into two different classes. In this way,
we avoid including noise due to old misclassification into
the current training set.

We report the results for the best settings of the baseline
methods – standalone Random Forest is the first baseline;
we use the same configurations proposed in [52] and [60]
for RHWDL and HHC respectively. For DroidLegacy [30] we
extract the Android malware features, run their algorithm
using their open-source implementation [7], and report best

15. Augmenting a newly classified sample into the training set might
lead to cascading of noise.
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Fig. 14: Change in performance (MiF*) with the increase in
(a) δ1 and (b) δ2 for EC2 (we consider Random Forest and
different clustering methods) on the DREBIN dataset.

results obtained by tuning parameters as recommended in
their paper. For K2 we report the results of Random Forest
after considering outputs of all the clustering methods as
features.

Note that the number of detected clusters and the num-
ber of ground-truth families may not be identical (c.f. Figure
3 in which there are 2 classes in the training sample; how-
ever we obtain 3 clusters in the final result). Therefore, we
compare the performance of EC2 with other baselines using
cluster evaluation metrics: MiF*, MaF*, NMI, ARI and PU
(see Section 8 for formal definition).

Table 4 shows significant performance gains for EC2
(using Random Forest classifier and different clustering
methods with δ1 = 0.6 and δ2 = 0.5) and other baselines.
The values of the thresholds are selected based on Figure
14 – the performance of Random Forest is best for δ1 = 0.6
and δ2 = 0.45. The EC2 algorithm with DBSCAN turns out
to be the best in this task – MiF*: 0.76, MaF*: 0.97, NMI:
0.67, ARI: 0.14 and PU: 0.48, which is 6%, 9%, 6%, 27% and
14% higher than the best baseline (K2) respectively. Most
importantly, EC2 detects singleton families with average
Precision (Recall) of 0.43 (0.31), which is significantly higher
than the performance reported in Section 8.2. Interestingly,
DroidLegacy which was specifically proposed to classify
Android malware families turns out to be even worse than
K2 and EC2 when considering all the families. This indicates
that ensemble approaches which combine clustering and
classification results may be the best choice for classifying
malware families.

Finally, we evaluated competing methods separately for
small and large families. Table 5 shows that for families with
size ≥ 10, EC2 performs best, even better than Random
Forest (standalone). For families with size < 10, EC2 per-
forms slightly worse than DBSCAN probably due to some
classification noise propagated from the classifier. However,
for small families EC2 still outperforms both RF and K2.
Although we have shown the performance of EC2 for An-
droid malware prediction, we believe it can also be used to
in general for other datasets.

9.3 Experimental Results on Koodous Dataset

We now present experimental results on the more recent
Koodous dataset [9]. Koodous is a community-based plat-
form similar to VirusTotal, but it is entirely focused on static
and dynamic analysis of Android malware.

The Koodous academic dataset was generously pro-
vided to us by the Koodous administrators and contains

TABLE 5: Comparison of EC2 with the best classifier (Ran-
dom Forest), the best clustering (DBSCAN) and the best
baseline method (K2) for small (size < 10) and large (size
≥ 10) families in terms of MiF* and MaF* on the DREBIN
dataset.

Method Small Families (< 10) Large Families (≥ 10)
MiF∗ MaF∗ MiF∗ MaF∗

RF (Standalone) 0.29 0.73 0.78 0.93
DBSCAN (Standalone) 0.49 0.91 0.68 0.86
K2 [42] 0.36 0.75 0.76 0.90
EC2 (RF+DBSCAN) 0.45 0.89 0.82 0.95

50,000 malware samples spanning from December 2015 to
May 2016. This dataset is more recent than DREBIN, but
only about 6,700 samples have been labeled with coarse-
grained families (namely, categories). We use the labels al-
ready provided in this dataset as the ground truth because
they have been closely investigated by Koodous admin-
istrators. In particular, the dataset contains the following
categories (size within the parenthesis): SMS-fraud (3,257),
Adware (3,069), Information-Theft (110), Ransomware
(95), Fake-Installer (95), Rooting (50), Banker (31).

We use the Koodous dataset because (i) it contains more
recent malware (hence it may be interesting to observe how
EC2’s performance changes as new obfuscation techniques
are encountered), (ii) it contains more coarse-grained fami-
lies which are more challenging to cluster.

We perform the same feature extraction techniques de-
scribed in Section 4, and obtain static and dynamic features
for the malware samples. We then consider 6,700 labeled
malware samples, randomly divide it into 5 folds and
predict the families for each fold separately. The following
experiment is repeated 50 times and results are averaged.

TABLE 6: Performance of the baseline methods and EC2 on
the Koodous dataset. We consider Random Forest (RF) and
different clustering methods separately with δ1 = 0.85 and
δ2 = 0.5. The best baseline and the best combination for EC2
are highlighted.

Method MiF∗ MaF∗ NMI ARI PU

Ba
se

lin
es RF (Standalone) 0.46 0.68 0.59 0.09 0.34

RHWDL [52] 0.42 0.53 0.50 0.06 0.33
HHC [60] 0.44 0.65 0.60 0.08 0.37
DroidLegacy [30] 0.40 0.56 0.53 0.07 0.35
K2 [42] 0.48 0.70 0.61 0.11 0.39

E
C
2

RF+Hierarchical 0.52 0.71 0.63 0.11 0.39
RF+Affinity 0.51 0.69 0.62 0.10 0.38
RF+K-Means 0.54 0.73 0.64 0.11 0.42
RF+MeanShift 0.53 0.72 0.63 0.13 0.40
RF+DBSCAN 0.56 0.74 0.65 0.13 0.45

Table 6 shows that although the overall prediction per-
formance is lower than that of DREBIN, EC2 still outper-
forms the comparative baselines. Therefore, we may con-
clude that EC2 is useful for the datasets containing more
recent malware samples (which are intelligently obfuscated
and harder to detect).

10 CONCLUSIONS

This paper makes several major contributions. First, we
proposed a systematic analysis of state-of-the-art classification
and clustering algorithms applied to the task of grouping
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Android malware into families, and by considering different
combinations of static and dynamic features. Second, we
proposed EC2, the first algorithm used to group malware
into families that uses an ensemble of both classification and
clustering approaches. Third, we show that the performance
of EC2 is high even when considering families of all sizes,
achieving an overall Micro and Macro F-Score of 0.76 and
0.97, respectively. Moreover, EC2 also works well on small mal-
ware families which can be very hard to identify, yielding to
an F-Score of 0.36 for singleton families which is very good,
given the lack of training data. Fourth, a detailed analysis of
some Android malware families reveals that our approach
is also effective in characterizing and explaining behavior
of Android malware families. Fifth, we showed that EC2
is equally successful in detecting families of more recent
malware samples, and also performs significantly well with
obfuscated feature set. Future work might involve how
to group malware families into more coarse-grained cate-
gories and improve data-driven understanding of malware
behaviors. Moreover, since malware authors may employ
increasingly sophisticated obfuscation techniques, future
work may also address how to design automated feature
combination strategies to make it harder for the attacker to
evade classification. For instance, instead of using a base
set of features, we could replace them for analysis purposes
with various linear or non-linear combinations of features.
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