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Abstract—The cloud computing paradigm has become really
popular, and its adoption is constantly increasing. Hence, also
network activities and security alerts related to cloud services
are increasing and are likely to become even more relevant
in the upcoming years. In this paper, we propose the first
characterization of real security alerts related to cloud activities
and generated by a network sensor at the edge of a large
network environment over several months. Results show that
the characteristics of cloud security alerts differ from those that
are not related to cloud activities. Moreover, alerts related to
different cloud providers exhibit peculiar and different behaviors
that can be identified through temporal analyses. The methods
and results proposed in this paper are useful as a basis for the
design of novel algorithms for the automatic analysis of cloud
security alerts, that can be aimed at forecasting, prioritization,
anomaly and state-change detection.

Index Terms—Security analytics; Cloud security; Cloud alerts;
Temporal characterization.

I. INTRODUCTION

In recent years, the cloud computing paradigm has known

great popularity and diffusion [1]. Since all cloud services

are accessed through Internet, also network activities related

to their usage have been increasing as well, and this will

likely become even more relevant in the upcoming years.

Among all network activities related to the usage of cloud

services, we focus on security alerts generated by network

sensors [2]–[5], that are popular defense systems adopted for

the protection of many organizations. Network sensors monitor

traffic and generate a security alert whenever a packet matches

a signature related to malware, botnets, scanning, or other

suspicious network activity. In particular, we refer to alerts

related to the usage of cloud services as cloud security alerts.

In this paper, we propose the first quantitative and tem-

poral characterization of cloud security alerts observed over

several months from a real large network environment. Pre-

vious works related to temporal analysis of security alerts

either focus on outdated datasets (e.g., [6], [7]) or do not

consider cloud activities (e.g., [8]). Our main objective is

to understand if cloud alerts exhibit peculiar characteristics

that could be exploited for automatic alerts analyses (e.g.,

aimed at anomaly detection [9]). Several endogenous and

exogenous factors affect alerts generation and complicate the

derivation of some conclusions, such as hosts (dis)connections,

intervention of network and system administrators on firewall

rules, antivirus updates. Despite all these dynamisms, the

proposed characterization shows some consistent results: cloud

alerts have quite different characteristics with respect to those

related to non-cloud activities; alerts related to different cloud

providers exhibit different temporal behaviors suggesting that

they should be analyzed separately. The results and methods

of our characterization are useful as a basis for the design

of novel strategies for the automatic management of cloud

security alerts, such as forecasting [10], anomaly [9] and state-

change [11] detection. Moreover, our characterization can be

useful for cloud forensics and for identifying which are the

most relevant security events related to cloud activities.

The remainder of the paper is structured as follows. Sec-

tion II compares the characteristics of cloud and non-cloud

alerts, and motivates our investigation. Section III presents

some analyses that are preliminary to the temporal char-

acterization proposed in Section IV, where we analyze the

distribution and temporal dependence of different groups of

cloud alerts. Section V presents an in-depth analysis with

respect to security alerts related to different cloud providers.

Section VI compares our work with related literature. Finally,

Section VII outlines conclusions and possible directions for

future research.

II. CLOUD SECURITY ALERTS

Our focus is on the characterization of cloud security alerts,

that is, alerts generated by network activities related to cloud

providers and services. In particular, we consider a real dataset

of security alerts generated by a sensor at the edge of a large

network environment over four months.

For this characterization, we first build a list of the major

cloud providers by examining all the IaaS, PaaS and SaaS

providers considered by Gartner [12] in its reports and magic

quadrants related to cloud technologies and vendors. Then, we

build lists of public IP addresses referring to all these cloud

providers. In most cases this information is published directly

in the support section of their public website (e.g., [13]). Cloud

providers have an interest in making this information public

and accurate since current and prospective customers can use

the lists of public IPs to check whether any network mal-

function is caused by firewall misconfiguration or blacklisted

IPs. Whenever this information is not published, we build

a list of public IP addresses based on the information that

can be extracted from the RIPE public database [14]. These

lists are then used to determine whether a given security alert

generated by the network sensor is related to cloud activities.

In particular, we classify as cloud each alert where the source
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Fig. 1. Comparison of cloud and non-cloud alerts.

or destination address is included in one of the lists of public

IPs related to the major cloud providers. We remark that

the real dataset of security alerts has been generated by a

signature-based network intrusion detection system [15] (i.e.,

sensor) situated at the edge of the observed large network

environment. Since the sensor is used in an operational setting,

it has been tuned by network administrators in order to

minimize false positives. The evaluated dataset includes a

total of about 160,000 cloud alerts, each related to one of the

following cloud providers (listed in alphabetical order): Adobe

Cloud [16], Amazon [17], CloudFlare [18], Dropbox [19],

Google [20], Rackspace [21], Salesforce [22]. In Figure 1

we report a stack histogram of the alerts per day observed

over four months, where cloud alerts numerosity is compared

to non-cloud alerts. The X-axis represents time, and the Y -

axis is the number of alerts per day. From this figure, we can

observe that cloud alerts account for about 1.96% of the overall

number of alerts generated by the network sensor, and about

98.04% of security alerts is not related to cloud activities.

Although their absolute number is low, further analyses

show that cloud alerts exhibit characteristics that differ con-

siderably with respect to non-cloud alerts. It is possible to

highlight this difference by classifying security alerts with

respect to the alerts classes defined by the taxonomy in [23].

Each class corresponds to alerts that are related to different

kinds of security events and attacks (e.g., network scans,

trojan activities or privilege escalation attempts). Table I shows

how cloud and non-cloud alerts are distributed among the

alerts classes. For each class, the column cloud (non-cloud)

reports the percentage of cloud (non-cloud) alerts belonging

to that class, with respect to the total number of cloud (non-

cloud) alerts. As an example, we can see that 43.88% of all

cloud alerts belong to the successful-recon-limited class (e.g.,

corresponding to fingerprinting or reconnaissance activities),

whereas only 6.61% of all non-cloud alerts belong to the same

class. In Table I we omit all the alerts classes that are defined

in the taxonomy but that account for less than 0.01% for both

cloud and non-cloud alerts. From this table it should be clear

that the most active alerts classes are different between cloud

TABLE I
PERCENTAGE OF CLOUD AND NON-CLOUD ALERTS WITH RESPECT TO

DIFFERENT ALERTS CLASSES.

Alerts class [23] Cloud Non-cloud

successful-recon-limited 43.88 % 6.61 %

web-application-attack 17.06 % 0.41 %

trojan-activity 16.36 % 73.82 %

attempted-recon 8.37 % 1.75 %

non-standard-protocol 8.01 % 0.13 %

web-application-activity 2.09 % 1.56 %

attempted-admin 1.89 % 3.26 %

misc-activity 1.54 % 3.96 %

suspicious-login 0.32 % 0.11 %

protocol-command-decode 0.23 % 0.82 %

attempted-dos 0.18 % 0.14 %

bad-unknown 0.03 % 4.06 %

attempted-user 0.02 % 0.28 %

misc-attack 0.01 % 3.06 %

suspicious-filename-detect 0.01 % 0.00 %

network-scan 0.00 % 0.03 %

and non-cloud alerts.

Other relevant differences can be highlighted by focusing

on the security alerts belonging to each class. In particular,

in Table II for each alerts class we report the percentage of

cloud alerts belonging to that class. Since cloud alerts are

about ≈ 2% of the overall number of security alerts (see

Figure 1), if the distribution of cloud and non-cloud alerts

was equal with respect to alerts classes, then cloud alerts

would account for ≈ 2% in all the classes. However, it is

interesting to observe that this assumption does not hold, and

that some classes contain a percentage of cloud alerts that

is much higher than expected (in some cases, even higher

than 10%), whereas other classes contain only few cloud alerts

(less than 1%). For example, a relevant part of the alerts in

non-standard-protocol and web-application-attack are related

to cloud activities, whereas security alerts in bad-unknown and

misc-attack are generated mostly by non-cloud activities.

These results show that the most relevant security events

corresponding to cloud activities are different with respect

to non-cloud alerts, thus motivating further investigations on

cloud alerts characteristics and temporal behaviors. Since the

growing success of cloud services, it is highly probable that

such analyses will become even more relevant in the upcoming

years.

III. PRELIMINARY TEMPORAL ANALYSES

This section presents some temporal analyses that are

preparatory to the characterization proposed in the upcoming

sections. We observe that any temporal analysis about the

cloud security alerts is complicated by the fact that alerts

generation depends on several endogenous and exogenous

factors, among which we can identify:

• the number of alerts is increased by new infections,

security events, attacks and attempts of attacks;
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TABLE II
CONTRIBUTIONS OF CLOUD ALERTS TO EACH ALERTS CLASS.

Alerts class [23] Percentage of cloud alerts

non-standard-protocol 55.49 %

web-application-attack 45.06 %

suspicious-filename-detect 21.88 %

successful-recon-limited 11.70 %

attempted-recon 8.70 %

suspicious-login 5.65 %

web-application-activity 2.61 %

attempted-dos 2.48 %

attempted-admin 1.14 %

misc-activity 0.77 %

protocol-command-decode 0.55 %

trojan-activity 0.44 %

attempted-user 0.14 %

bad-unknown 0.01 %

misc-attack 0.01 %

• the number of alerts is reduced by the manual intervention

of network and cloud administrators on firewall rules,

cleaning of infected machines, patching of software and

operating systems, updating of antivirus and antimalware;

• finally, there are manual or automatic actions that have

unpredictable effects on the number of generated alerts;

for example, the number of active hosts is variable be-

cause server machines are always active, whereas clients

may be disconnected during night, and novel machines

can be connected to the network; updates of sensor rules

may alter the signatures that generate the alerts (e.g., new

IPs included in a blacklist), as well as sensor maintenance

through manual shutdown or change of active ruleset.

Some of these aspects could be monitored in order to correlate

them with the trend of the alerts series, whereas some of them

are intrinsic to the system and likely hidden to the analysis.

One of the goals of our characterization is to investigate

whether, despite these dynamic factors, we can identify some

peculiar temporal behaviors of the cloud alerts.

In order to reduce the impact of such noise factors, some

alerts partitioning has to be performed. In particular, inspired

by previous literature [24], we divide the cloud alerts in two

main groups:

• incoming cloud alerts, that are related to packets issued

from cloud services to the observed network environment;

• outgoing cloud alerts, that are related to packets issued

from the observed network environment to cloud services.

This separation is also motivated by the fact that these two

groups generate different types of alerts, as shown in Table III

and Table IV (related to incoming and outgoing cloud alerts,

respectively). From these tables, we can observe that most of

the alerts incoming from cloud are related to web-application-

attack, whereas most of the alerts outgoing to cloud are

related to successful-recon-limited (e.g., attempts of gaining

illegitimate access to remote services and data) and trojan-

activity (e.g., botnets and malware activities). Hence, we can

expect that different types of alerts may correspond to different

temporal behaviors.

In Figure 2(a) we report a stack histogram that compares

the contributions of incoming and outgoing cloud alerts, and in

Figure 2(d) we report the corresponding pie chart. From these

figures, we can observe that most of the activity is related

to outgoing cloud alerts (≈ 75%). This prevalence could be

related to the fact that security policies and restrictions of

cloud providers limit the number of alerts originated from

cloud services. It is also interesting to investigate if there is

any difference in the numerosity of the daily/nightly activity

of outgoing and incoming cloud alerts. To this purpose, in

Figures 2(b) and 2(c) we report the stack histograms com-

paring the activity during daytime hours (from 8:00 to 19:59)

and night hours (from 20:00 to 7:59) of the outgoing and in-

coming cloud alerts, respectively. Figures 2(e) and 2(f) are the

corresponding pie charts. From these figures, we can observe

that most of the incoming cloud alerts are generated during

daytime, whereas the outgoing cloud alerts are almost equally

divided between daytime and night. A similar numerosity of

cloud alerts in both daytime and night may suggest that alerts

are either generated by automatic malware or originate from

different time-zones [24]. On the other hand, a prevalence

during daytime suggests that the alerts may be solicited by

user activities, or originated from the same time-zone.

All results presented in this section motivate further inves-

tigations on the cloud security alerts by considering outgoing

and incoming cloud alerts separately.

TABLE III
FIVE MOST RELEVANT CLASSES IN INCOMING CLOUD ALERTS.

Alerts class [23] Percentage

web-application-attack 67.29%

attempted-recon 8.71%

web-application-activity 8.62%

attempted-admin 7.79%

trojan-activity 4.65%

TABLE IV
FIVE MOST RELEVANT CLASSES IN OUTGOING CLOUD ALERTS.

Alerts class [23] Percentage

successful-recon-limited 57.97%

trojan-activity 21.05%

non-standard-protocol 10.58%

attempted-recon 8.27%

misc-activity 2.03%

IV. TEMPORAL CHARACTERIZATION

We now characterize the temporal behavior of the outgoing

and incoming cloud alerts by analyzing their distribution [25]

in different time-slots of the day (Section IV-A), and by

investigating the presence of temporal dependence [10] in the

cloud alerts series (Section IV-B).
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Fig. 2. Comparison between the incoming and outgoing cloud alerts series, and during different times of the day.

A. Analysis of alerts distribution

We are now interested in examining how the alerts per

hour are distributed with respect to different time-slots of the

day. We refer to hourly time-slots ranging from 0 to 23 (i.e.,

from 12am to 11pm). We consider a time granularity equal

to one hour because it guarantees an acceptable compromise

between noises and patterns for alerts generated in large

network environments [26]. The purpose is to examine how the

numbers of cloud alerts per hour are distributed with respect

to daily and nightly time-slots. This is useful for increasing

the awareness on the security status of the system, and is also

a preparatory step for forecasting, prioritization, anomaly and

state-change detections [9], [11], [27] of cloud alerts tuned on

the observed environment.

The alerts distribution analysis begins by considering the

cloud alerts series per hour Ct, where each element ct rep-

resents the number of cloud alerts generated during hour t.

In particular, we consider two separate series related to the

outgoing and incoming cloud alerts, respectively. In order

to evaluate the cloud alerts distribution and dispersion, each

series Ct is sampled into 24 separate datasets d0, d1, ..., d23,

where each dataset di contains the number of cloud alerts

per hour detected during the i-th time-slot of the day (i ∈
{0, 1, ..., 23}). For example, the dataset d2 contains the values

of the number of cloud alerts per hour that were generated

from 2:00am to 2:59am.

In Figures 3, we report side-by-side boxplots [25] referring

to the time-slots of the outgoing and incoming cloud alerts,

respectively. This representation of the alerts distribution is

useful because it easily allows us to:

• understand how alerts are distributed and dispersed with

respect to the time-slots of the day;

• estimate number and scale of outliers with respect to the

different time-slots;

• compare behavior of outgoing and incoming cloud alerts.

Another important aspect of this representation is that it con-

tains simultaneously information about the cloud alerts hourly

activity (because each boxplot represents the distribution of

the number of alerts per hour), and information about the

temporal behavior of the cloud alerts during the day (because

the boxplots of the different time-slots are represented side-

by-side).

Let us first focus on the distribution of outgoing cloud

alerts in Figure 3(a). We can observe that the alerts dispersion

(represented by interquartile ranges) is similar among the

different time-slots of the day. This is probably related to

automatic activities that are executed by bots or other malware

installed on hosts that are always active. It is interesting to

observe that, however, the medians are more active during

daily time-slots between 8 and 18. This suggests that part of

the outgoing cloud alerts may be related to user activities (e.g.,

hosts turned on/off by users, or user interactions with cloud

services). On the other hand, in Figure 3(b) we can observe

that both dispersion and medians of incoming cloud alerts are

higher during daily time-slots and lower during night, thus

suggesting that most of incoming cloud alerts activity may be

caused in response to users interactions.

These results show how our analyses are effective for

understanding relevant temporal information about cloud alerts

distribution, and for acquiring more awareness on the security

status of the system.
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Fig. 3. Analysis of alerts distribution for outgoing and incoming cloud alerts.

B. Analysis of temporal dependence

We now investigate the presence of temporal dependence

in the outgoing and incoming cloud alerts by analyzing if

their series exhibit some relevant trend, periodic or seasonal

components, or if they are dominated by noise. The trend

represents a systematic component of the series that does not

repeat over time, whereas periodic and seasonal components

repeat within the time range captured by the data; noise rep-

resents a component that could hide trends and periodicities.

The analysis of temporal dependence is also useful as a basis

to determine whether cloud alerts series are predictable or

not [10], and if anomaly or state-change detection approaches

could be applied effectively [9], [11], [27].

In order to investigate the presence of temporal dependence,

we consider the autocorrelation function [10], and we de-

fine ACF (τ) as the value of the autocorrelation function at

lag τ . High values and slow decay of the ACF suggest that

future values are related to past values with some degree of

accuracy. In particular, a time series is considered predictable

for a window k if its autocorrelation function |ACF (i)| ≥
0.3, ∀i ∈ {0, 1, ..., k} [10], [28]. Moreover, autocorrelation

studies can also reveal the presence of periodicity in the

analyzed series.

Since temporal dependence might be hidden by noise and/or

out-of-scale outliers, before evaluating the ACF we also per-

form some filtering on the cloud alerts series. First, we replace

the outliers above the 99th quantile with the value of the

upper whisker, because out-of-scale values could corrupt the

autocorrelation analyses. Then, since we are not interested in

finding the optimal filtering technique for each cloud series, we

adopt a simple smoothing filter that does not alter the nature

of the data. In particular, we consider a simple moving average

(SMA) filter with a centered window of radius r hours, where

each value of the series Ct is replaced with the average of

its 2r neighbors. In order to evaluate if the autocorrelation

results are influenced by filtering, we consider three different

configurations: no filtering, SMA filter with radius r = 1 (3-

hour window) for a low-impact smoothing, and SMA filter

with radius r = 5 (11-hour window) for a stronger smoothing.

In Figures 4 we report the autocorrelation results related

to the outgoing and incoming cloud alerts, respectively. In

particular, each figure reports results related to the three

configurations: no filtering, SMA filtering with radius r = 1
and r = 5. The X-axis represents the autocorrelation lag τ

in hours, and the Y -axis reports the ACF values. The vertical

dashed lines represent 24-hour shifts. From Figure 4(a), we

can observe that the outgoing cloud alerts exhibit a strong

trend component with a slow decay, and that the series is

predictable for even 72 hours ahead. This result may also

be related to the similar dispersion of the outgoing alerts in

the different time-slots of the day (see Figure 3(a)). On the

other hand, in Figure 4(b) the incoming cloud alerts exhibit

a strong 24-hour periodicity, thus implying that the highest

probability of finding a similar value is 24 hours ahead. The

information about this periodicity can be useful for modeling

the series for prediction and anomaly detection purposes [9],

[10]. Moreover, this 24-hour periodicity suggests that most

of the incoming cloud alerts are probably related to user

interactions.

V. CLOUD PROVIDERS CHARACTERIZATION

In this section, we perform a further breakdown of the

outgoing and incoming cloud alerts by considering the three

most active providers in the observed environment. The pur-

pose is to investigate whether alerts related to different cloud

providers exhibit different temporal behaviors. For the sake of

fairness, we refer to the three most active providers as CP1,

CP2 and CP3, in descending order of numerosity of alerts. In

Figures 5, we report the stack histograms and pie charts that

compare outgoing and incoming alerts of CP1, CP2 and CP3,

respectively. We can observe that most of the outgoing cloud

alerts are related to CP1, whereas most of the incoming cloud

alerts are related to CP2. An interesting observation is that CP1

and CP2 are used to deliver services targeted to the users in

the observed network environment. In particular, CP1 is used

mainly as a SaaS provider, hence it is plausible that the number

of outgoing cloud alerts is higher, since the alerts are mainly
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Fig. 4. Analysis of temporal dependence for outgoing and incoming cloud alerts.

related to internal hosts that contact providers machines. On

the other hand, CP2 has been adopted from around day 75

(see Figure 5(b)), and is used mainly for content delivery and

proxying, hence it is plausible that most alerts are related to

cloud activities coming from outside the observed network

(incoming cloud alerts). Finally, the alerts of CP3 are lower in

terms of numerosity also because CP3 is not used directly

for offering services to the users in the observed network

environment.

This different behavior of the cloud providers is relevant

when considering automatic algorithms for the management

of huge volumes of alerts. For example, the incoming alerts

of CP2 in Figure 5(b) exhibit a rather stable behavior in terms

of number of cloud alerts per day, with a state-change around

day 75, hence even simple threshold-based algorithms (e.g.,

CUSUM-based [11]) considering a time granularity equal to

a day could be effective for identifying relevant anomalies

and/or state-changes in this alerts group. On the other hand,

in Figure 5(a) we can observe that the cloud alerts series

per day of CP1 is more unstable, hence considering finer

time granularities may be more appropriate when modeling

algorithms for the detection of relevant security events in this

group.

In Figures 6, we present a more detailed analysis of cloud

alerts distribution and temporal dependence with respect to

a finer time granularity of an hour. For space reasons, we

report the most relevant results referring to CP1 (outgoing),

CP2 (incoming) and CP3 (incoming). These figures confirm
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Fig. 5. Contribution of different providers with respect to incoming and outgoing cloud alerts.
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Fig. 6. Comparison of alerts distribution and temporal dependence related to different cloud providers.

that most of the behavior of outgoing and incoming cloud

alerts is mainly caused by CP1 and CP2, respectively (see

also Figures 3). In particular, we have that the dispersion

of CP1 (outgoing) is similar with respect to the different

time-slots (Figure 6(a)), and the high autocorrelation suggests

that the trend of this series is predictable for even 72 hours

ahead (Figure 6(d)). Most of the activity of CP2 (incom-

ing) is focused during daytime (Figure 6(b)), with a strong

24-hour periodicity (Figure 6(e)). On the other hand, the

number of cloud alerts related to CP3 (incoming) is lower

(Figure 6(c)), with a slight prevalence of activity during daily

time-slots. Although Figure 6(f) shows that the autocorrelation

of CP3 (incoming) is lower with respect to the other cloud

providers, we can observe that the smoothing filter with radius

r = 5 improves predictability and highlights a weak 24-hour

periodicity.

The results presented in this section show that a separation

based on the cloud providers can be effective for a more

accurate modeling of the cloud alerts characteristics, that is

preparatory for automatic analyses.

VI. RELATED WORK

To the best of our knowledge, this paper proposes the first

quantitative and temporal characterization of cloud security

alerts observed from a real large network environment over

several months. These results are useful as a basis for further

studies on automatic analyses of cloud security alerts, that are

likely to become more relevant in the upcoming years.

The work proposed in this paper mainly relates to three

research areas: attribute-based alerts correlation, temporal

analysis of security alerts, and cloud security.

Most of the previous work focused on security alerts pro-

pose some sort of correlation algorithms, mostly based on

alerts attributes [29], [30]. Their main goal is to aggregate

alerts having similar attributes, such as source/destination

addresses or timestamps. For example, normalization and

fusion unify alerts coming from different sources (e.g., through

IDMEF format [31]); prioritization [32] associates a level

of risk to each alert on the basis of an asset database;

verification [33] determines through heuristics whether an

attempt of attack has been successful or not (e.g., an alert for a

Windows vulnerability directed at a Linux server); multi-step

attack detection [34], [35] aims at identifying alerts that are

part of the same attack. Although the approach proposed in

this paper focuses on alerts analysis, it clearly differs from

these previous works. Most approaches based on attribute-

based alerts correlation work well for relatively stable contexts

and/or require a-priori knowledge on attack scenarios and on

the characteristics of the monitored environment. On the other

hand, characterizations and temporal analyses proposed in this

paper aim at identifying peculiar temporal characteristics and

properties that can be useful for designing novel algorithms

and strategies for the management of cloud security alerts.

Temporal analysis of security alerts is considered by Qin

et al. [6] for correlating alerts series to identify novel attacks.

However, their work has a different goal (multi-step attack

detection vs preliminary temporal analyses), relies on differ-

ent techniques, and performs its evaluation on the outdated

DARPA dataset [7]. On the other hand, our focus is on charac-

terizing quantitative and temporal properties of cloud security

alerts and our analyses refer to a dataset that comprises real

and recent security alerts. Other works related to temporal

analysis of security alerts are presented in some papers by
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Viinikka et al. [8], [26], [36], where the authors propose

several techniques for anomaly detection of low-priority alerts

series (e.g., related to ICMP messages). However, they assume

that data exhibit strong temporal dependence, and focus on the

proposal of anomaly detection algorithms, whereas our focus

is on the characterization of cloud security alerts, that can

also be useful as a basis for understanding applicability of

regression-based anomaly detection [9].

Finally, the work proposed in this paper clearly differenti-

ates from the existing literature related to cloud security [37],

that mainly focuses on the proposals of architectures for

guaranteeing data (e.g., [38], [39]) and network (e.g., [40])

protection in cloud platforms.

VII. CONCLUSIONS

In this paper, we propose the first quantitative and temporal

characterization of security alerts related to cloud network

activities. This investigation is preliminary for identifying and

tuning the most appropriate techniques for the automatic anal-

ysis of cloud security alerts, such as forecasting, prioritization,

anomaly and state-change detection. Results referring to real

cloud alerts generated by a network sensor at the edge of a

large network environment show that our analyses are able to

identify different characteristics between cloud and non-cloud

security alerts. Moreover, in-depth analyses on cloud alerts

show that alerts related to different cloud providers exhibit

different temporal behaviors, hence suggesting that they should

be studied and modeled separately. These results have been

achieved despite the dynamism and several noise factors

inherent to the analyzed context. Future work will focus on

the study of methodologies for the automatic investigation of

cloud alerts characteristics with the purpose of understanding

applicability of popular alerts management techniques.
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[8] J. Viinikka, H. Debar, L. Mé, A. Lehikoinen, and M. Tarvainen, “Pro-

cessing intrusion detection alert aggregates with time series modeling,”
Information Fusion, vol. 10, no. 4, pp. 312–324, 2009.

[9] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41, no. 3, p. 15, 2009.

[10] P. J. Brockwell and R. A. Davis, Introduction to time series and

forecasting. Taylor & Francis, 2002.
[11] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory

and application. Prentice Hall Englewood Cliffs, 1993.
[12] “Gartner,” http://www.gartner.com/, visited in May 2015.
[13] “Amazon Web Services: IP ranges,” http://docs.aws.amazon.com/

general/latest/gr/aws-ip-ranges.html, visited in May 2015.
[14] “Ripe Network Coordination Centre,” https://stat.ripe.net/, visited in

May 2015.
[15] “Suricata IDS,” http://suricata-ids.org/, visited in May 2015.
[16] “Adobe Cloud,” https://www.adobe.com/creativecloud.html, visited in

May 2015.
[17] “Amazon Web Services,” http://aws.amazon.com/, visited in May 2015.
[18] “CloudFlare,” https://www.cloudflare.com/, visited in May 2015.
[19] “Dropbox,” https://www.dropbox.com/, visited in May 2015.
[20] “Google cloud platform,” https://cloud.google.com/, visited in May

2015.
[21] “Rackspace,” http://www.rackspace.com/, visited in May 2015.
[22] “Salesforce,” http://www.salesforce.com/, visited in May 2015.
[23] “Snort users manual,” http://manual.snort.org/, visited in May 2015.
[24] D. Dagon, C. C. Zou, and W. Lee, “Modeling botnet propagation using

time zones.” in Proc. of the 13th Network and Distributed System

Security Symposium, vol. 6, 2006, pp. 2–13.
[25] T. T. Soong, Fundamentals of probability and statistics for engineers.

John Wiley & Sons, 2004.
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