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Abstract—Several advanced cyber attacks adopt the technique of “pivoting” through which attackers create a command propagation
tunnel through two or more hosts in order to reach their final target. Identifying such malicious activities is one of the most tough
research problems because of several challenges: command propagation is a rare event that cannot be detected through signatures,
the huge amount of internal communications facilitates attackers evasion, timely pivoting discovery is computationally demanding. This
paper describes the first pivoting detection algorithm that is based on network flows analyses, does not rely on any a-priori assumption
on protocols and hosts, and leverages an original problem formalization in terms of temporal graph analytics. We also introduce a
prioritization algorithm that ranks the detected paths on the basis of a threat score thus letting security analysts investigate just the
most suspicious pivoting tunnels. Feasibility and effectiveness of our proposal are assessed through a broad set of experiments that
demonstrate its higher accuracy and performance against related algorithms.
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1 INTRODUCTION

Defending large enterprise systems is an increasingly
challenging task. Modern attacks may combine social
engineering strategies with malware to exploit software
vulnerabilities, allowing attackers to find their ways into
the network. Advanced attacks tend to last for long
periods [1], but most malicious activities are masked by
the sheer amount of traffic flowing in and out enterprise
networks and by the large volume of daily alarms over-
whelming security analysts. Attackers typically begin by
compromising any vulnerable internal host and then try
to reach the most valuable targets by moving host-to-
host laterally and deeper into the enterprise network.
To this purpose, attackers are increasingly adopting the
so called pivoting technique [2] in which a command
propagation tunnel is created through one or more com-
promised internal host called pivoters. Unaware pivoters
propagate malicious commands to the last host of the
pivoting chain and return the results to the initial host.
The terminal host can either represent the final target
or be used by attackers to further increase the length of
the pivoting tunnel. Several examples of pivoting can
be found in the Operation Aurora [3], in the Operation
Night Dragon [4], in the BlackEnergy [5] malware that
in December 2015 compromised the Ukrainian power
grid, in the MEDJACK [6] attack in 2016 where attackers
stole health data by using medical devices as pivoters.
Among the most recent cases at the time of writing, we
can cite the Archimedes tool [7] that leverages pivoting
to reach the LAN of target hosts, passively gathers
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their Web traffic, and injects forged Web pages with the
goal of compromising hosts or stealing credentials. All
these examples demonstrate that pivoting is an emerging
and challenging research problem. Pivoting attacks are
facilitated and the complexity of their detection is ag-
gravated by various factors: the large number of hetero-
geneous host activities and the hundreds of thousands
of communications occurring every day in any medium-
large enterprise, which are difficult to analyze and may
ease attackers evasion; the risk of false alarms because
some activities detected as pivoting may be benign,
such as SSH tunnels created by network administrators.
Identifying malicious pivoting actions would require to
keep stateful traces of all consecutive communications
between internal hosts over long time periods but this
approach is not viable in terms of computational and
memory costs.

To address these issues, we propose the first algorithm
for detection and threat prioritization of pivoting that
analyzes internal network flows and does not rely on
any a-priori knowledge about the adopted protocols and
compromised hosts, which are instead needed by related
solutions making them impractical for real contexts.
For example, the algorithms in [8], [9] consider only a
specific protocol (e.g., SSH brute-forcing), while another
paper [10] considers only hosts that generate some IDS
security alerts. Approaches in [11], [12] may work for
detecting pivoting only if aggressive scan activities are
performed over hundreds of hosts. We initially propose
an original formalization of the pivoting detection prob-
lem into the temporal graph analytics domain, and then
we present a pivoting detection algorithm that iden-
tifies pivoting tunnels through efficient network flow
analyses that do not require any a-priori assumption
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about involved protocols and hosts. As some paths may
correspond to benign activities, we add an original threat
prioritization algorithm that ranks the detected pivoting
activities on the basis of a maliciousness score. The
execution times of the pivoting detection algorithm are
evaluated on extensive network traffic data of a large
organization. The efficacy of the pivoting detection and
threat prioritization algorithms is assessed by injecting
realistic pivoting attacks and by comparing our results
against those of related algorithms [8], [11].

The remainder of the paper is structured as follows.
Section 2 compares this paper against related literature.
Section 3 describes the details of the pivoting technique
for cyber attacks. Section 4 presents the pivoting detec-
tion as a temporal graph analytics problem and proposes
an original algorithm for path discovery. Section 5 pro-
poses some key indicators for threat prioritization. Sec-
tion 6 presents performance and efficacy results through
an extensive campaign of experiments. Finally, Section 7
discusses conclusions and future work.

2 RELATED WORK
To the best of our knowledge, this paper presents the
first algorithms for detection and threat prioritization of
malicious pivoting activities: our proposal relies on the
analysis of network flows, does not make assumptions
about involved protocols and hosts, and is based on an
original formulation of the pivoting detection problem
in the temporal graph analytics domain.

A research area broadly related to pivoting studies
malware propagation, whose two representative exam-
ples are worm detection [12] and botnet [13] discovery.
These works define statistical models of normality for
communications among internal hosts, where anomalies
represent possible bot/worm propagations. Other papers
in this area analyze network flows (e.g., [14], [15], [16])
as we do, but their solutions work only under two major
assumptions that are not valid for pivoting: they require
from tens to hundreds of hosts involved in malicious
activities; they assume that an aggressive propagation
model is adopted by the bot/worm. Unlike these sce-
narios, pivoting activities typically involve few internal
hosts out of the thousands and more of a medium-large
organization. Moreover, several research papers based on
network flows analyses [17] aim to detect quite different
attacks, such as data exfiltration [18], DDoS [19], port-
scanning [20]. Other works focus on attack detection
in Wireless Sensor Networks that does not include the
identification of command propagation tunnels which is
the core of our proposal. For example, the authors in [21]
propose a protocol for detecting selective forwarding
attacks, and the researchers in [22] present a framework
for detecting ongoing attacks (such as DoS and ARP
replay) through usage control and chance discovery.

Research on pivoting is still at the beginning. Many
articles (e.g., [3], [4], [5], [6]) have a useful descriptive
approach of popular pivoting-based attacks, but they

do not propose any novel detection algorithm. Other
works (e.g., [23], [24]) aim to train security experts
on pivoting-related plans and attacks but they do not
consider countermeasures. Some papers focus on pre-
vention of pivoting-related activities, without propos-
ing any detection approach. For example, Chapman et
al. [25] simulate pivoting-based attacks through a game-
theoretic framework and propose some best practices
based on their observations. Johnson et al. [26] present
an original graph metric that quantifies whether granting
a certain privilege to an employee may increase chances
of pivoting in Windows domains.

Other research efforts related to pivoting detection
make strong assumptions that are not applicable to real
contexts. Some papers [8], [9] are oriented to detect
pivoting-related activities involving the SSH protocol
and brute-force password guessing, while we do not
make any assumption on host and protocol types. The
heuristics proposed in [10] are valid to detect one-step
pivoting activities, but just those related to security
alerts issued by a signature-based network intrusion
detection system. We can detect pivoting paths of any
length and do not leverage alerts of other defensive
systems, although integrations are feasible. Some works
focus on lateral movement [27] activities where attackers
move within the network to get closer to their final
target. For example, the paper in [28] proposes a game-
theoretic framework that models attackers behavior and
simulates network responses aiming to prevent attackers
from reaching valuable hosts. The problem is that expert
attackers can easily evade similar defensive schemes by
acting differently from the expected model. The detection
algorithm proposed by Fawaz et al. [29] requires analyses
of huge amounts of host-based logs, which are hard to
collect in large organization and may be easily altered
by attackers because we remark that they control the
hosts of the pivoting tunnel. Unlike these proposals,
we consider network flows because they are easier to
collect and store; moreover, our analysis requires less
processing costs than investigations carried out on raw
traffic data [20].

3 PIVOTING
In pivoting, attackers use a command propagation tunnel
created among three or more internal hosts with the pur-
pose of controlling a specific target. Past literature some-
times refers to pivoting with the term island-hopping [10],
where attackers propagate commands through hosts in
multiple LANs (“islands”). Many recent cyberattacks [3],
[4], [5], [6] used pivoting in their propagation phase. It
is of paramount importance to find novel approaches
for early detection of pivoting because it would prevent
attackers from reaching their target and damaging an
organization.

Figure 1 reports an example of pivoting activity, where
attackers have created a pivoting tunnel between four in-
ternal hosts belonging to three different LANs. From the
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Fig. 1. Example of pivoting activity.

entry host, malicious commands are forwarded through
intermediate hosts (called pivoters) to the last host of the
pivoting chain, called terminal host, which executes these
commands and returns the results. This last host can be
the final target or it can be used to further extend the
pivoting tunnel.

After having established a foothold within the internal
network of the target organization, attackers typically
perform the following steps:

1) Reconnaissance: attackers gather information
about neighbor hosts through some active (e.g.,
port-scan) or passive means (e.g., by looking at
the arp table).

2) Compromise: attackers compromise another inter-
nal host using a known or zero-day vulnerability;
in such a way, they can increase the length of the
pivoting chain, and the newly compromised host
will become the terminal host as in Figure 1.

3) Pivoting: the commands of the attackers are prop-
agated from the entry host to the terminal host
through the pivoting chain. Any command issued
to the terminal host is executed and the results
are forwarded towards the entry host through the
pivoting chain.

The first two actions are part of lateral movement [27]
where attackers assume control of other hosts to get
closer to their final targets, and the pivoting is the ac-
tual command propagation activity through the tunnel
of compromised hosts. To perform pivoting, attackers
may adopt different protocols and tools, which can be
either standard (e.g., SSH or netcat), or ad-hoc software
designed to avoid easy detection (e.g., meterpreter [30]).
Depending on the chosen protocols, payloads may or
may not be subject to encapsulation. For example, if
attackers adopt SSH, then data is encrypted and en-
capsulated within protocol-specific headers; if they use
netcat, then the original payload is forwarded without
modifications.

It is important to highlight that detection techniques
based on signatures [31] cannot detect pivoting, because
they only perform pattern matching against packet head-
ers and payloads, which is not sufficient to detect active
command propagation tunnels. Some parts of the lateral
movement phase (i.e., reconnaissance and compromise)
may be detected by signature-based systems, but only if

attackers perform active reconnaissance and uses pub-
licly disclosed exploits [10].

We focus on the detection of pivoting involving in-
ternal hosts. Looking for suspicious communications
among the internal and external traffic is a different
and widely investigated problem by the literature on
intrusion detection through signature-based [32], [33],
[34], anomaly-based [35], [18], protocol-specific [36], [8]
and attack-specific proposals [12], [11]. The approaches
can be combined for a more accurate detection, but their
integration is out of the scope of this paper.

There are several issues that make pivoting detection
a tough problem. Command propagation is a rare event
immersed in a huge amount of activities characterizing
the network traffic of a medium-large organization. Since
some pivoting activities are benign (e.g., for network ad-
ministration), detection algorithms are affected by false
alarms because malicious pivoting is an even rarer event.
Finally, attackers can use a variety of tools and protocols
in the attempt to evade detection. For these reasons, we
propose an innovative approach that through the analy-
sis of network flows identifies pivoting flow sequences
and then integrates pivoting detection with the threat
prioritization algorithm presented in Section 5. In such a
way, we allow security analysts to inspect only few piv-
oting activities exhibiting the most suspicious behavior.
Figure 2 outlines the main steps of the proposal.

4 PIVOTING DETECTION

The proposed pivoting detection algorithm has the pur-
pose of identifying all active pivoting tunnels within an
internal network.

4.1 Pivoting detection as a temporal graph problem

We detect pivoting activities by searching for active
command propagation tunnels. Network flows are the
input data of our algorithm. A network flow represents a
common way of summarizing traffic data [17] because it
contains all information about connections, such as start-
time, duration, transmitted bytes, involved IP addresses
and port numbers. Using network flows instead of raw
traffic data has the twofold benefit of simplifying data
gathering and decreasing processing costs. A network
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Fig. 2. Overview of proposed method.
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Fig. 3. Temporal graph representation of network flows
between five hosts (a,b,c,d,e).

flow f can be defined as an ordered sequence:

f = (src, dst, psrc, pdst, bin, bout, d, t) (1)

where src and dst are the IP addresses of the source
and destination hosts of the flow f ; psrc and pdst are the
source and destination ports of their communications; bin
and bout are the incoming and outgoing bytes; d is the
duration (by default 120s [37]), and t is the timestamp
corresponding to the beginning of the communication.
For each network flow, src and dst represent the flow
direction with respect to the node that started the com-
munication, even if they keep exchanging packets in
both directions. Flow direction can be reliably computed
by traditional network security appliances through the
analysis of packet headers and timings [37].

From network flows it is possible to model commu-
nications among internal hosts as a temporal graph [38]
corresponding to a time window W , where nodes corre-
spond to internal hosts and directed temporal edges rep-
resent flows. Command propagations in pivoting tunnels
are represented by network flows connecting pivoters
sequentially and separated by a low latency. For this
reason, we introduce the concept of maximum propagation
delay εmax, defined as the maximum amount of time that
can pass between two consequent communications to
consider them as a part of the same pivoting activity.

We define a pivoting flow sequence F as an ordered set
of flows (f1, f2, ..., fL), L ∈ N, L > 1, where:

1) all consecutive flows must be adjacent (dst of a
flow is src for the following flow);

2) all connected nodes appear only once in the se-
quence;

3) consecutive flows are chronologically ordered;
4) consecutive flows are separated by at most εmax

time units.
We define a pivoting path P as an ordered set of

hosts (h1, h2, ..., hN ) for which at least one pivoting flow
sequence exists. A pivoting path corresponds to one or

more pivoting flow sequences, whereas each pivoting
flow sequence corresponds to a specific pivoting path.

We illustrate some examples of flow sequences and
pivoting paths by referring to the temporal graph shown
in Figure 3. For the sake of clarity, multi-edges are
represented by timestamp labels separated by a comma
as in [39]. If we consider any value of εmax ≥ 27s,
the temporal graph contains all the paths identified in
Table 1. For the sake of simplicity, the represented flows
only report src, dst and t.

TABLE 1
Example of pivoting paths and corresponding flow

sequences from Figure 3 for εmax ≥ 27s.

.

Path Length Flow sequences

a,b,d 2 (a,b,2s),(b,d,15s)
(a,b,11s),(b,d,15s)

a,b,c 2 (a,b,2s),(b,c,12s)
(a,b,11s),(b,c,12s)

b,d,e 2 (b,d,15s),(d,e,30s)
(b,d,15s),(d,e,42s)

a,b,d,e 3

(a,b,11s),(b,d,15s),(d,e,30s)
(a,b,11s),(b,d,15s),(d,e,42s)
(a,b,2s),(b,d,15s),(d,e,30s)
(a,b,2s),(b,d,15s),(d,e,42s)

We observe that some paths are subsets of other paths,
and paths involving the same vertices can occur at differ-
ent timestamps. If we consider a maximum propagation
delay εmax = 5s, the pivoting paths of interest are
reported in Table 2. This propagation delay defines the
admitted tolerance for considering two flows as part of
the same pivoting path.

TABLE 2
Example of pivoting paths and corresponding flow

sequences from Figure 3 for εmax = 5s.

Path Length Flow sequences

a,b,d 2 (a,b,11s),(b,d,15s)

a,b,c 2 (a,b,11s),(b,c,12s)

4.2 Algorithm for pivoting detection
In Algorithm 1 we present a novel algorithm for pivot-
ing detection that finds all the pivoting flow sequences
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Algorithm 1: Algorithm for pivoting detection.
Input: List of m temporal edges corresponding to time window

W (Flows), maximum propagation delay εmax, minimum
incoming and outgoing bytes Bin

min and Bout
min, maximum

flow duration δmin, maximum pivoting path length Lmax

Output: List of pivoting flow sequences of length ≥ 2
(corresponding to pivoting paths)

1 // Initialization
2 PivotingSequences ← emptyList();
3 CandidateF lows ← emptyList();
4 for flow f in Flows do
5 if (f.d ≥ δmin) and (f.bin ≥ Bin

min and f.bout ≥ Bout
min)

then
6 Insert flow f in PivotingSequences;
7 Insert flow f in CandidateF lows;
8 // Look for possible pivoting flow sequences of
length ≥ 2

9 for flow sequence F in PivotingSequences do
10 if length(F) ≥ Lmax then
11 break;
12 FoundSequences←

ExtendP ivotingSequence(F , CandidateF lows, εmax)
13 Include FoundSequences in PivotingSequences;
14 return List of elements in PivotingSequences with length ≥ 2;
15 // Function to find flow sequences of length

(L+ 1) given a sequence F of length L
16 Function ExtendPivotingSequence(F ,CandidateF lows,εmax)
17 FoundSequences ← emptyList();
18 hF ← last host in pivoting flow sequence F
19 tF ← lastest timestamp of F
20 FlowsWithinDelay ←

BinarySearch(CandidateF lows[tF : tF + εmax])
21 for flow f in FlowsWithinDelay do
22 if ((f.src equal to hF ) and (f.dst not in sequence F )) then
23 NewSequence← (sequence F with flow f);
24 Insert NewSequence in FoundSequences;
25 return FoundSequences;

within a temporal graph representing network commu-
nications among internal hosts. We observe that once
the pivoting flow sequences are found, it is immediate
to enumerate the corresponding pivoting paths (as in
Table 1). The pivoting detection algorithm takes the
following input parameters:
• the temporal graph of internal network communi-

cations built over the time window W , represented
as the list of its m edges. Without loss of generality,
we consider that the list of edges (representing
network flows) is ordered according to their times-
tamp;

• the maximum propagation delay εmax, which is the
maximum amount of time tolerated between two
consecutive flows to be part of the same pivoting
flow sequence;

• the minimum flow duration δmin, which is the
minimum duration of a network flow to consider
it part of a pivoting path;

• the minimum incoming and outgoing bytes Bin
min

and Bout
min, which is the minimum number of bytes

transmitted in a network flow to consider it as a
possible portion of pivoting;

• the maximum pivoting sequence length Lmax,

which is the maximum length of the pivoting paths
that the algorithm will search for. This parameter
may be seen as a terminating condition.

In Table 3, we report the most relevant symbols used
in this paper.

TABLE 3
Symbol table.

Symbol Description

F Pivoting flow sequence.
P Pivoting path.
FP Set of pivoting flow sequences associated with path P .

W
Time window (e.g. 1 hour) analyzed by the pivoting
detection algorithm.

m Number of network flows within W .

B
in/out
min

Minimum number of incoming/outgoing bytes of a
network flow for building flow sequences.

δmin
Minimum network flow duration for building flow
sequences.

L Length of a pivoting flow sequence (number of edges).

Lmax
Maximum pivoting flow sequence length tolerated by
the pivoting detection algorithm.

ε Command propagation delay in a pivoting tunnel.

εmax
Maximum command propagation delay tolerated by the
pivoting detection algorithm.

Algorithm 1 can be divided into two main phases:
initialization, and extending pivoting sequences.

Initialization: This phase takes the m edges of the
temporal graph as its input and stores them into two
separate lists: PivotingSequences contains the list of all
the sequences of length L = 1 and is used to store new
sequences as the algorithm proceeds; CandidateF lows
contains the flows that are evaluated for extending the
existing sequences. In line 5, an initial pruning condition
is reported as a function of the inputs: for the analysis of
pivoting detection, only flows with at least δmin duration
and Bin

min and Bout
min bytes are considered for this analysis.

If Bin
min = Bout

min = δmin = 0, then the m input flows
are considered without pruning. Conditions in line 5 are
considered because any pivoting activity has to last for
some time (since attackers are interacting through some
command interpreter), and has to transfer some bytes
in both directions (the propagated command, and the
corresponding response).

Extending pivoting sequences: This is the core
phase of the algorithm that repeats a common function
multiple times. In line 9 there is a cycle that iterates
through all the PivotingSequences found so far. Initially,
it considers only sequences of length L = 1 correspond-
ing to the flows themselves. For each flow sequence
F of length L in the PivotingSequences, the algorithm
executes a function that searches for all possible flow
sequences of length (L+1) that extend F . This function is
called ExtendPivotingSequence (line 16), and takes as its
input a pivoting flow sequence F , a maximum propaga-
tion delay εmax and the CandidateF lows. The algorithm
extracts the last host in the pivoting flow sequence hF
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and its most recent timestamp tF . Then, it performs a bi-
nary search in line 20 on the CandidateF lows in the time
interval [tF , tF + εmax]. This binary search is admissible
because the CandidateF lows are listed in sorted order
of timestamp. The results of the binary search are stored
in FlowsWithinDelay, which are then iterated to check
whether a flow f ∈ FlowsWithinDelay can extend the
currently analyzed pivoting flow sequence F . There are
two conditions in line 22 that must be verified for F to
be extended with f :
• the source node of f must be equal to hF (which

is the last host of F);
• the destination node of f must not be in sequence
F (it must be a new host in the sequence).

Whenever both conditions are satisfied, a new pivoting
sequence is added to the FoundSequences list, and then
returned. By repeating the cycle on line 9 until a pivoting
path of length Lmax is reached (line 11) or until no
flow sequences can be further extended, all the pivot-
ing sequences of length at most Lmax are enumerated.
We observe that in line 14 the algorithm returns only
pivoting sequences of length L ≥ 2, because those with
L = 1 are the flows themselves.

Let us describe the algorithm by considering
the example graph in Figure 3 and the function
ExtendPivotingSequence with parameters εmax = 5s,
flow sequence F = ((a, b, 11s)) of length L = 1.
For the sake of simplicity, we report only
(src, dst, t) of each flow. After the binary search in
line 20, the flows within delay [11s, 11s + 5s] are:
(a, b, 11s), (b, c, 12s), (d, a, 13s), (d, c, 12s), (b, d, 15s). Only
the flows starting with b and not containing a can
extend F = ((a, b, 11s)). Only the flows (b, c, 12s) and
(b, d, 15s) satisfy both conditions, and hence the new
extended sequences found are ((a, b, 11s), (b, c, 12s))
and ((a, b, 11s), (b, d, 15s)). It is immediate to get the
corresponding pivoting paths (a, b, c) and (a, b, d).

4.3 Computational complexity
The proposed algorithm for pivoting detection has an
overall worst-case time complexity of:

O(mLmax · log2(m) · τ) (2)

where m is the number of network flows within the
window W , Lmax is the maximum pivoting tunnel length
we are looking for, and τ is the maximum number
of flows between any [t, t + εmax] interval. A proof of
Eq. 2 is reported in Appendix A (see Supplementary
Material) along with a comparison against two possible
alternatives: the subgraph isomorphism and the brute force
enumeration algorithms.

For small values of εmax representing the common
case, the parameter τ � m, hence the complexity may
be simplified as follows:

O(mLmax · log2(m)) (3)

Although the computational complexity of the Eq. 2
remains high, in Section 6 we verify through a large set
of experiments that the proposed algorithm is efficient
and applicable to real contexts. In particular, we can
limit the propagation time εmax because in many real
attacks [30], [3], [4], [5], [6] commands are propagated
as fast as possible, thus leading to values of ε of few
milliseconds. Although advanced attackers could intro-
duce some delays to evade detection, values of ε higher
than few seconds make pivoting unpractical. Moreover,
post-exploitation activities, such as command execution
or data exfiltration, require flows lasting for at least few
seconds, and comprising at least some tens of bytes.
These conditions allow the pruning phase of the pivoting
detection algorithm to reduce up to 90% the number
of edges with respect to the worst case. As shown in
Section 6, in practice the computational cost decreases
significantly, and the execution time in a COTS machine
renders the proposed algorithm applicable even for large
network environments.

5 THREAT PRIORITIZATION

Some pivoting activities may be benign, hence it is
important to avoid or limit the false alarms and let the
security analysts focus on the most likely threats. For this
reason, we integrate the algorithm presented in the pre-
vious section with a threat prioritization approach that
ranks the detected paths on the basis of their suspicious
factors. We define the following threat indicators for each
detected pivoting path:
• path novelty,
• reconnaissance activities,
• involved LANs,
• use of uncommon ports,
• anomalous data transfers.

Path novelty: The appearance of paths involving
hosts that have never previously communicated may be
related to some unauthorized activities, as also high-
lighted in [27]. Hence, the score of the communication
path novelty should be high if all the communications
occurring among the involved hosts and their ports have
never been seen in the recent past. Taking into consid-
eration the pivoting path P , we consider the set FP of
the flow sequences F associated with P (see Table 2), we
define the score N(P) as the highest percentage of novel
communications between hosts involved in the path P :

N(P) = max
F∈FP

{(
len(F)− len(SF )

len(F) + 1

)}
(4)

where N(P) ∈ [0, 1], len(F) is the number of edges
(flows) in F , and SF is the longest common subsequence
of F found among the flow sequences related to the
path detected in the recent past runs of Algorithm 1.
We define a common subsequence as any subsequence
of F where all flows have the same src and dst, and
either the same psrc or pdst ports but not necessarily both.
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This latter condition is useful because in client-server
communications it is common to have different clients
ports over time but only one server port. If N(P) = 1, all
communications within the path are novel; if N(P) = 0,
all communications have occurred in the past.

Reconnaissance activities: Attackers perform re-
connaissance to look for neighbor hosts that they can
compromise. The paths including hosts involved in such
activities should have a high risk score R(P) as defined
below:

R(P) = n.hosts of P involved in recon.
len(P)

(5)

where R(P) ∈ [0, 1], and len(P) is the number of hosts
in the pivoting path P . This score reports the percentage
of hosts within a path that have been involved in re-
connaissance activities. As the reconnaissance detection
problem is out of the scope of this paper, we rely on
existing techniques, such as those proposed in [20].

Involved LANs: Reaching internal hosts not eas-
ily accessible from the external network is one of the
main reasons leading attackers to adopt pivoting tech-
niques [40]. Thus, paths including hosts of different LAN
segments may be a risk signal that should be prioritized.
We define the Z(P) score as:

Z(P) = n.hosts of P in different LANs
len(P)

(6)

where Z(P) ∈ [0, 1], and len(P) is the number of hosts in
a path P . This score denotes the percentage of different
LANs included in a path, where Z(P) = 0 if all hosts
belong to the same LAN, and Z(P) = 1 if each host
belongs to a different LAN.

Use of uncommon ports: Some ports, such as
number 22 (SSH), 23 (Telnet), 443 (SSLH Multiplexing),
3389 (Windows remote desktop protocol) or 5938 (Team
Viewer), are commonly used for benign tunneling ac-
tivities. Others are uncommon and possibly risky. We
consider an edge (flow) to be uncommon if both psrc and
pdst are uncommon ports. The related score is computed
for each path as the maximum of the following ratio:

S(P) = max
F∈FP

{
n.flows in F with uncomm. ports

len(F)

}
(7)

where S(P) ∈ [0, 1], FP is the set of flow sequences
associated with the pivoting path P , and len(F) is the
number of flows contained in F . This score represents
the maximum percentage of uncommon ports used in
any communication of a pivoting path. For example,
S(P) = 0.5 when there is at least one flow sequence of
P whose 50% of the flows use uncommon ports.

Anomalous data transfers: Attackers often leverage
pivoting tunnels to perform data exfiltrations. A method
to prioritize such activities is to verify whether the
amount of data exchanged among the hosts of a given
path, considering all its corresponding flow sequences,
has increased with the respect to the recent past. To this

purpose, we define the E(P) score as follows:

E(P) =
{
1, if a data transfer anomaly is detected
0, otherwise

(8)

To detect whether an anomaly occurred, we apply the
boxplot rule [41] to the exchanged traffic among hosts.

Overall threat score: We compute an overall threat
score T (P) of the path P as the sum of the indicators
(we omit P for readability) where higher values denote
paths that are more likely malicious:

T = (N +R+ Z + S + E), T ∈ [0, 5] (9)

All pivoting paths identified with the proposed detec-
tion algorithm are ranked according to their threat score.
Section 6 validates the effectiveness of our threat prior-
itization score in different scenarios and with respect to
other baseline algorithms.

6 EXPERIMENTAL EVALUATION

We demonstrate the effectiveness and feasibility of the
proposed pivoting detection and threat prioritization
algorithms when deployed on a real network of a large
organization. We initially describe the dataset used for
experiments. In Section 6.1 we demonstrate that our
algorithm is able to detect all existing pivoting activities;
we then inject different pivoting attacks into real network
traffic, and show that our algorithms are able to detect
and prioritize all the injected threats. Section 6.2 faces
the additional challenge posed by the evasion strategies
that may be adopted by expert attackers; we show the
robustness of our proposals even against these attempts.
In Section 6.3 we compare our solutions against two
related algorithms. Finally, in Section 6.4 we measure
the execution times of the proposed pivoting detection
algorithm with the goal of demonstrating its applicability
to real contexts.

Our test dataset consists of real network traffic cap-
tured by probes situated in a large organization, col-
lected over a time span of over five months (160 days).
The dataset is composed by more than half a billion
(657, 213, 849) network flows describing the internal net-
work communications among 8, 198 hosts. This scenario
can be modeled as a graph where the number of tempo-
ral edges (flows) is significantly larger than the number
of nodes (hosts). A portion of the used dataset has been
made publicly available, and additional information is
included in the Appendix B.

6.1 Pivoting detection and prioritization
We evaluate how the proposed algorithms for pivoting
detection and threat prioritization perform under vary-
ing attack conditions. We initially execute the pivoting
detection algorithm on the test dataset once per hour
(W = 60 minutes) until each of the 160 days of the
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dataset has been analyzed. In typical pivoting activities
the propagation delay is in the order of milliseconds [3],
[4], [5], [6], hence we initially consider the performance
with εmax = 1s and no limit on the maximum length of
the pivoting path (Lmax =∞). Manual inspection of each
path detected by the algorithm reveals that they are all
true and benign pivoting activities corresponding to SSH
tunneling and proxying. As the algorithm has been able
to identify all tunneling activities occurring within the
network for propagation delay ε ≤ 1s, we can conclude
that, in absence of attacks with propagation delay ε > 1s,
it achieves 100% Accuracy.

As no malicious pivoting activity occurs in the testbed
considered for evaluation, we emulate five classes of
pivoting attacks, which are summarized in Table 4, and
inject them into the real traffic traces. AC1 refers to an
attacker creating an SSH tunnel and performing port-
scans to detect the next victim, which is compromised
after a brute-force SSH password guessing. In AC2, the
attacker uses the SSH protocol for exchanging 30MB of
data, but no brute-forcing nor active reconnaissance is
performed. AC3, AC4 and AC5 are performed through
the Metasploit toolset. The Attack Classes in Table 4
consider also increasing length of the pivoting chain to
show that our algorithm can still detect longer chains
and how this affects prioritization.

TABLE 4
Pivoting Attack Classes.

Attack Class Vector Len Recon LANs Data

AC1 SSH 2 3 2 10 MB
AC2 SSH 2 7 2 30 MB
AC3 Metasploit 4 3 5 100 MB
AC4 Metasploit 3 7 4 < 1 MB
AC5 Metasploit 4 7 1 5 MB

The network traffic generated by each Attack Class is
collected as netflow data and then injected into each day
of the real traffic dataset. This injection process is realized
through an ad-hoc script that merges each attack flow
with the dataset by replacing the IP addresses of the
virtual pivoter hosts with those of real hosts. To avoid
bias when choosing real hosts as pivoters, we identify
two main sets of hosts: ω and β. The ω set contains the
hosts with a total number of communications above the
95-th percentile, while the β set those below the 5-th
percentile. In other words, ω and β sets contain high-
activity and low-activity hosts, respectively. Since it is
easier to prioritize pivoting activities in β because it
contains hosts that rarely interact, we can observe that
ω and β represent a worst- and best-case scenarios for
prioritization, respectively.

We execute the pivoting detection algorithm on the
entire injected dataset for εmax = 1s, no bounds on the
maximum length of the pivoting paths (Lmax =∞), and
W = 60 minutes. Our algorithm is able to correctly detect
all the injected pivoting paths thus achieving a 100%

Precision. Unfortunately, in addition to malicious pivot-
ing paths, the algorithm detects some benign pivoting
activities present in the dataset. This result motivates our
choice of relying on the threat prioritization algorithm
presented in Section 5. The goal now is to assess whether
this algorithm is actually able to prioritize malicious
pivoting activities by placing them at the top positions in
the ranking. Table 5 reports the results of the threat prior-
itization algorithm for each Attack Class and each set of
injected hosts. Each row displays the average rank and its
standard deviation obtained by each Attack Class after
considering all the pivoting paths found within each day
in the dataset. Lower values of rank correspond to higher
prioritization. For example, if a pivoting path is ranked in
position 1, it implies that it has the highest likelihood of
being malicious among all pivoting paths detected in the
same day. We observe that all attacks of each class have
always an average rank lower than 2 even for the worst-
case high-activity hosts belonging to the ω set. Moreover,
a standard deviation that is always below 1.4 indicates
that the vast majority of malicious pivoting paths are
ranked in the top positions. These important results
show that the threat prioritization algorithm is capable of
assigning a high, stable rank to all the considered Attack
Classes, thus ensuring the prioritization of the malicious
pivoting activities.

TABLE 5
Performance of the threat prioritization algorithm.

Attack Class average rank standard deviation
AC1 (ω) 1.38 1.32
AC1 (β) 1.17 0.72
AC2 (ω) 2.01 1.18
AC2 (β) 1.55 1.04
AC3 (ω) 1.00 0.00
AC3 (β) 1.00 0.00
AC4 (ω) 1.13 0.51
AC4 (β) 1.14 0.68
AC5 (ω) 1.15 0.83
AC5 (β) 1.14 0.78

We can also observe that AC3 is always ranked first
with standard deviation equal to zero, because the at-
tacks in this class span over five LANs and involve about
100MB of exfiltration traffic (see Table 4). On the other
hand, the attacks in AC1 and AC2 exhibit slightly lower
ranks. This is motivated by the fact that these attacks
are performed through SSH, which is a standard proto-
col often used by system administrators for legitimate
tunneling operations; as expected, the threat scores of
AC1 and AC2 are slightly lower than those performed
through Metasploit (see Section 5). Nevertheless, the
average ranks of these two classes are always lower than
3.

6.2 Evasion techniques
Our pivoting detection and prioritization algorithms are
able to detect and properly prioritize malicious pivoting
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tunnels occurring in internal networks. We now further
stress the algorithms by considering skilled attackers that
employ evasion techniques based on the introduction of
some propagation delay in their pivoting communica-
tions. Detecting these stealthy attacks requires that the
algorithm works with higher values of the parameter
εmax. Increasing this parameter has two consequences
on the results of the detection algorithm: its execution
times increase; it may label as pivoting activities some
flow sequences that pertain to normal traffic, that is, it
may be affected by false positives. For these reasons, it
is of paramount importance to evaluate the robustness
of the detection algorithm against evasion techniques of
expert attackers. To this purpose, we repeat the attacks
of Table 4 by adding the propagation delays reported
in Table 6, and then inject the delayed attacks in each
day of the entire dataset. For the sake of completeness,
we also consider delays equal or longer than 10 seconds,
although they are unpractical in reality. The motivation
is simple: if for example the attackers want to perform
an action in a pivoting chain of 5 hosts with a delay of
ε = 25s, they should wait for 5hosts×25s×2 directions,
which is more than four minutes delay for each issued
command.

TABLE 6
Emulated propagation delays ε for the Attack Classes.

Attack Class
AC1 AC2 AC3 AC4 AC5

Delay 2s 4s 8s 10s 15s

We then execute the detection algorithm on the in-
jected dataset for values of εmax up to 30s and we do not
set any bound on the maximum length of the pivoting
path (Lmax = ∞), while the size of the time-window
is still set to W = 60 minutes. The detection results are
reported in Table 7. From this table we can conclude that
our detection algorithm is able to detect all the Attack
Classes when it is executed with an adequate value of
εmax.

TABLE 7
Pivoting attack detection for increasing εmax.

Attack Class 1s 5s 10s 15s 20s 25s 30s

AC1 7 3 3 3 3 3 3
AC2 7 3 3 3 3 3 3
AC3 7 7 3 3 3 3 3
AC4 7 7 3 3 3 3 3
AC5 7 7 7 3 3 3 3

We then execute the threat prioritization algorithm and
report in Table 8 the daily average and standard devia-
tion of the rank obtained by attacks belonging to each
Attack Class over the entire injected dataset. Rows refer
to the attacks belonging to different Attack Classes and

columns to different values of the parameter εmax. Each
cell reports the average rank and its standard deviation
between parentheses. We observe that the average rank
produced by our algorithm is always lower than 3 and
its standard deviation is always lower than 2.

The accuracy of the prioritization algorithm is eval-
uated by denoting the detection rate as the percentage
of days in which an injected Attack Class has been
prioritized within the top 5 threats. Table 9 reports the
detection rates for increasing values of εmax. The best
results are achieved on attacks of type AC3, where the
algorithm always prioritizes the injected attacks within
the top 5. As expected, the lowest detection rate (between
93% and 97%) is obtained for AC2 attacks because they
represent a stealthy activity with standard SSH protocol
and no reconnaissance (see Table 4). We also recall that
ω represents the set of high-activity internal hosts, which
are much more challenging to prioritize. Overall, we
can be satisfied by the results in Table 9 because our
algorithm prioritizes the large majority of Attack Classes
with detection rates between 97% and 99%.

We can motivate these results by considering that
the proposed approach integrates a pivoting detection
with a threat prioritization phase. If the value of εmax is
high enough to tolerate the propagation delay inserted
by the attackers, then the pivoting detection algorithm
achieves 100% Recall, that is, all pivoting tunnels are
detected. In particular, if εmax = 1s then all the de-
tected flow sequences belong to actual pivoting paths,
therefore achieving 100% Precision and 100% Recall (see
Section 6.1). If we set εmax = 1s and the attackers
perform some evasion techniques, the algorithm may be
affected by some false negatives. In these cases, detec-
tion of evasive pivoting tunnels is achieved by setting
εmax > 1s because any flow sequence with a propagation
delay greater than 1s is either a false positive or an
evasive pivoting attack, and is never benign because
benign operations have short latencies. To overcome the
limitations of the pivoting detection algorithm in case of
evasive attackers, we designed the threat prioritization
algorithm to rank the pivoting tunnels most likely related
to threats in top positions, despite the presence of benign
tunnels and false positives. We can conclude that the
combination of the proposed pivoting detection and
threat prioritization algorithms allows effective triage of
even the most evasive attackers, as demonstrated by the
results in Table 8.

6.3 Comparison with other detection algorithms
To the best of our knowledge, this paper proposes the
first approach targeted to pivoting detection and threat
prioritization that relies solely on network flows without
any assumption on protocols and hosts. Nonetheless, we
find meaningful to compare our solution with two algo-
rithms relying on network flows, SSHC [8] and WHL [11],
that we consider the most related to our approach.
SSHC detects SSH-based attacks involving port-scans
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TABLE 8
Threat prioritization: average ranking for increasing εmax.

Attack Class 1s 5s 10s 15s 20s 25s 30s

AC1 (ω) 7 3 1.48 (1.67) 3 1.55 (1.84) 3 1.48 (1.58) 3 1.62 (1.91) 3 1.65 (1.93) 3 1.69 (1.98)
AC1 (β) 7 3 1.21 (1.09) 3 1.21 (1.12) 3 1.21 (1.10) 3 1.21 (0.92) 3 1.21 (0.93) 3 1.21 (0.99)
AC2 (ω) 7 3 2.11 (1.23) 3 2.24 (1.26) 3 2.27 (1.46) 3 2.52 (1.57) 3 2.65 (1.66) 3 2.80 (1.94)
AC2 (β) 7 3 1.61 (1.11) 3 1.72 (1.19) 3 1.81 (1.34) 3 2.04 (1.29) 3 2.09 (1.54) 3 2.21 (1.65)
AC3 (ω) 7 7 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00)
AC3 (β) 7 7 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00)
AC4 (ω) 7 7 3 1.26 (0.86) 3 1.26 (1.14) 3 1.21 (1.31) 3 1.21 (1.00) 3 1.21 (1.63)
AC4 (β) 7 7 3 1.21 (0.75) 3 1.21 (1.06) 3 1.17 (1.23) 3 1.17 (1.32) 3 1.17 (1.37)
AC5 (ω) 7 7 7 3 1.26 (1.16) 3 1.21 (1.44) 3 1.21 (1.56) 3 1.21 (1.86)
AC5 (β) 7 7 7 3 1.21 (1.15) 3 1.17 (1.28) 3 1.17 (1.29) 3 1.17 (1.54)

TABLE 9
Detection rate in top 5 for increasing εmax.

Attack Class 1s 5s 10s 15s 20s 25s 30s

AC1 (ω) 7 98.1% 97.5% 97.5% 97.0% 97.0% 97.0%
AC1 (β) 7 98.1% 98.1% 98.1% 98.1% 97.5% 97.5%
AC2 (ω) 7 94.4% 94.4% 94.4% 93.8% 93.8% 93.8%
AC2 (β) 7 97.5% 97.0% 97.0% 95.0% 95.0% 95.0%
AC3 (ω) 7 7 100.0% 100.0% 100.0% 100.0% 100.0%
AC3 (β) 7 7 100.0% 100.0% 100.0% 100.0% 100.0%
AC4 (ω) 7 7 98.1% 98.1% 98.8% 98.8% 98.8%
AC4 (β) 7 7 99.4% 99.4% 98.8% 98.8% 98.8%
AC5 (ω) 7 7 7 98.1% 98.8% 98.8% 98.8%
AC5 (β) 7 7 7 99.4% 99.4% 98.8% 98.8%

and brute-force password guessing; when these actions
are performed through a remotely controlled internal
host, they are true pivoting attacks. WHL evaluates
variations in the graph of internal communications to
detect malware propagations; in this case, rapid malware
propagation through different hosts can be modeled as
a pivoting attack.

Comparative results are presented in Table 10, where
each row refers to a specific Attack Class. For this set
of experiments we assume an advanced attacker that
is trying to evade detection by applying the delays de-
scribed in Table 6. Each column of Table 10 summarizes
the results achieved by a different detection algorithm.
The first column refers to the detection and prioritization
algorithms proposed in this paper, in which εmax = 15
seconds, W = 60 minutes and Lmax = ∞. The last
two columns refer to the detection results obtained by
SSHC and WHL. Detected and not detected attacks are
marked by 3 and 7 symbol, respectively. The proposed
algorithm detects all pivoting paths, but it is also able to
prioritize those representing real threats. For this reason,
in Table 10 we also include the daily average rank and
standard deviation associated to the attacks belonging
to the same class. Since SSHC and WHL perform just
detection with no prioritization, we report whether the
injected pivoting attack has been detected or not.

From these results, we can observe that attacks in
AC1 can be detected by all three approaches. Our algo-
rithm detects and prioritizes it within the top 5 hosts;

TABLE 10
Comparison of detection algorithms.

Attack Class Alg (εmax=15s) SSHC WHL

AC1 (ω) 3 1.48 (1.58) 3 3
AC1 (β) 3 1.21 (1.10) 3 3
AC2 (ω) 3 2.27 (1.46) 7 7
AC2 (β) 3 1.81 (1.34) 7 7
AC3 (ω) 3 1.00 (0.00) 7 3
AC3 (β) 3 1.00 (0.00) 7 3
AC4 (ω) 3 1.26 (1.14) 7 7
AC4 (β) 3 1.21 (1.06) 7 7
AC5 (ω) 3 1.26 (1.16) 7 7
AC5 (β) 3 1.21 (1.15) 7 7

SSHC recognizes the attack associated with a brute-
force attempt, and WHL detects a sudden change in
the communication structure due to the reconnaissance
performed after pivoting. AC3 is always detected by our
approach and by WHL, however it is not detected by
SSHC because it does not involve brute-forcing of an
individual host, but a reconnaissance on multiple hosts.
Finally, we can observe that attacks in AC2, AC4 and
AC5 cannot be detected by SSHC and WHL because they
involve more subtle pivoting activities and they include
a propagation delay between 2s and 15s introduced by
the attackers to improve his chances of evasion. We can
conclude that our algorithm is by far the most effective
in detection and prioritization of pivoting activities even
if the attackers adopt evasive attack strategies.

6.4 Execution times

The computational complexity of pivoting detection al-
gorithms is a fundamental challenge for evaluating if
they can be applied to real contexts. As discussed in
Section 4.3, the worst-case computational complexity of
our algorithm is exponential with respect to the pa-
rameter Lmax (see Eq. 2), that is, the maximum pivot-
ing path length. Nevertheless, the parameter Lmax is
just a theoretical worst-case upper boundary because
in real networks the large majority of pivoting paths
have length L = 2 or L = 3. Hence, we show that the
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time required to analyze even large datasets has little
dependence on Lmax.

We execute the algorithm multiple times on the in-
jected dataset, each time providing different input values
for εmax (1s, 10s, 20s, 30s) and Lmax (2, 3, 4, 5, 6,∞). The
size of the time-window W is set to 1 hour and 12 hours.
Analyses are performed on a COTS server equipped with
one Intel Xeon E5-2609 v2 CPU with 4 physical cores
and 128GB RAM. Figures 4 report the average execution
times required for each run of the algorithm. The X-axis
in both figures corresponds to different input values of
Lmax; the Y -axis represents the average time (in seconds)
required for the computation, and each line refers to dif-
ferent input values of εmax. For the sake of completeness,
we report that the maximum standard deviation σmax

among all the experiments with time window W = 1
hour and W = 12 hours are of 4.8 seconds and 17.8
seconds, respectively. The results in these figures show
that the execution times are almost constant with respect
to the parameter Lmax for Lmax > 3 thus confirming that
the upper bound Lmax has no practical influence on the
paths present in the real dataset.

As expected, the execution times increase for increas-
ing εmax values because this parameter affects the re-
search space of the detection algorithm (see Section 4).
Nevertheless, these results show that the amount of
time required for analyzing even large datasets of flows
is short (the majority of execution times are below 2
minutes even when for analyses of 12 hours of traffic),
therefore demonstrating the applicability of the detection
algorithm to large real networks.
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Fig. 4. Execution times of the pivoting detection algorithm.

7 CONCLUSIONS

This paper presents a novel approach that integrates
detection and threat prioritization of pivoting attacks.
We formalize pivoting as a temporal graph problem,
and then we devise an innovative algorithm for de-
tecting all pivoting paths occurring within the network
by analyzing the internal network flows. The reduc-
tion of false alarms related to benign pivoting paths
is achieved through a novel threat prioritization algo-
rithm that considers different threat indicators typical
of malicious pivoting activities. Extensive experimental
evaluation on a real dataset consisting of nearly 650M
communications collected over more than five months
shows that the proposed approach is able to effectively
detect and prioritize malicious pivoting activities even
against attackers that adopt evasion techniques. We also
show that the short execution times (few minutes to
analyze one day of traffic of a large organization) make
the proposal applicable to real contexts.

We should consider that a modern defensive system
adopts multi-layer analyses, hence it is important to
evidence that the proposed algorithm can be integrated
with any other detection schemes based on black- and
white-lists of hosts, on analyses of DNS traffic and of
internal-to-external traffic. Similar extensions can make
detection of malicious activities much more effective.
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