
Efficient detection of unauthorized data modification

in cloud databases

Luca Ferretti, Fabio Pierazzi, Michele Colajanni, Mirco Marchetti, and Marcello Missiroli

University of Modena and Reggio Emilia

Email: {luca.ferretti, fabio.pierazzi, michele.colajanni, mirco.marchetti, marcello.missiroli}@unimore.it

Abstract—Cloud services represent an unprecedented oppor-
tunity, but their adoption is hindered by confidentiality and
integrity issues related to the risks of outsourcing private data to
cloud providers. This paper focuses on integrity and proposes an
innovative solution that allows cloud tenants to detect unautho-
rized modifications to outsourced data while minimizing storage
and network overheads. Our approach is based on encrypted
Bloom filters, and is designed to allow efficient integrity verifica-
tion for databases stored in the cloud. We assess the effectiveness
of the proposal as well as its performance improvements with
respect to existing solutions by evaluating storage and network
costs.

I. INTRODUCTION

Cloud computing represents an important business oppor-
tunity for many enterprises and organizations that are at-
tracted by high availability, scalability and elasticity properties
characterizing cloud-based services. Their adoption is often
hindered by the security issues related to outsourcing of data
to providers that cannot be completely trusted by the tenants
(e.g., [1]). Most literature related with cloud security assumes
that the cloud provider is honest-but-curious, meaning that
cloud service operations are always executed correctly, but
the cloud provider may access tenants data without being
authorized. This paper explores a more complex threat model
not excluding that some cloud provider employees may modify
or corrupt tenants data. In a similar scenario, it is important to
devise integrity algorithms and protocols that make it possible
for cloud tenants to detect unauthorized modifications to their
data.

There are several solutions based on Message Authentica-
tion Codes (MAC) that can guarantee the integrity of tenant
files stored in clouds [2]. Unfortunately, the application of
these algorithms to cloud databases would cause storage and/or
network overheads to the extent of preventing the convenience
of cloud services.

This paper proposes a novel scheme relying on Bloom
filters for the detection of unauthorized data modifications by
the cloud employees. This solution is specifically optimized
for cloud databases, and it is designed to be orthogonal with
respect to data encryption strategies for data confidentiality
proposed in literature [3]–[5]. Hence, it can be integrated with
existing encryption algorithms so to achieve both confidential-
ity and integrity of data stored in cloud databases. The benefits
of the proposed scheme are demonstrated by evaluating storage
and network overheads, and comparing them against those
related to MAC-based schemes under the TPC-C workload,
that is a famous benchmark for database services [6].

The remaining part of the paper is organized as follows.
Section II compares our solution with existing proposals. Sec-
tion III offers a detailed description of the proposed solution,
while its security guarantees are discussed in Section IV.
Performance evaluation in terms of storage and network over-
heads, as well as comparisons with respect to other schemes
for database integrity are provided in Section V. Finally,
Section VI concludes the paper by summarizing its main
contributions and future work.

II. RELATED WORK

Many cloud providers offer database services [7], but
the security in terms of tenant’s data confidentiality and
integrity is an open research area. Some papers are oriented
to guarantee data confidentiality [3]–[5] under the commonly
adopted honest-but-curious cloud provider threat model. That
is, some cloud provider employees may read tenant’s data to
try obtaining confidential information, but they do not modify
them and they execute all protocols correctly. These proposals
focus on the development of architectures and encryption
strategies that allow the tenant to execute SQL operations on
encrypted data. Other proposals also consider the issues related
to data integrity in the context of cloud storage services, while
few results exist that are related to data integrity of cloud
database services.

The solutions that are commonly adopted to guarantee
file integrity are based on the association of MACs to all
the files that are stored in the cloud [2]. In such a way, a
cloud tenant can verify data integrity by downloading a file,
recomputing its MAC and comparing it with the MAC stored
in the cloud. Since the cloud provider cannot fake a new MAC
and cannot modify the file without altering the resulting MAC,
data integrity is guaranteed if and only if the two MAC codes
match. This approach could be immediately applied to cloud
database services by associating a MAC with each attribute
(that is, to each element of each tuple) stored in the database.
However, since the size of a MAC is non-trivial (e.g., 256 bits
for HMAC based on SHA256) and bigger than many primitive
data types, this solution is not viable because of excessive
storage overhead.

Other schemes for guaranteeing data integrity in cloud
database services were proposed in [8], where the key idea
is to reduce the storage overhead by associating one control
value with multiple attributes. For example, the authors in [8]
present a scheme called Condensed-RSA (CRSA), in which
a control value is associated with a combination of all the
attributes of the same tuple. A drawback of similar approaches
is that whenever a cloud tenant aims to verify the integrity of

a1 ac aC

v1,1 . . . v1,C e1
. . . vr,c . . . er
vR,1 . . . vR,C eR

TABLE I: Database table enriched with encrypted Bloom
filters.

one attribute, he has to retrieve all the other attributes that are
needed to compute the control value. In the CRSA scheme, it
is necessary to download all the attributes of a row, even if the
cloud tenant needs only one of them. Hence, the reduction of
the storage overhead is achieved at the expense of increased
network overheads. RDAS is another proposal related to data
integrity [9]. Since it is applicable only to the context of static
databases where data are never updated, it is not viable in most
real scenarios.

This paper proposes a novel scheme that detects unautho-
rized data modifications while minimizing both storage and
network overheads through Bloom filters [10]. These filters
are proposed to guarantee integrity in cloud storage contexts
in [11], but the existing scheme cannot be immediately applied
to cloud database services. To the best of our knowledge,
this is the first paper that proposes a scheme for efficient
integrity verification in cloud databases based on encrypted
Bloom filters. We include an original evaluation of storage and
network overheads based on the TPC-C workload benchmark
that demonstrates the convenience of the proposal with respect
to the state of the art.

III. SCHEME DESIGN

In this section we describe the novel scheme that uses
encrypted Bloom Filters to guarantee integrity of the cloud
database while minimizing storage and network overheads.

Let us consider a table having R rows and C columns:
we denote as vr,c, where r = [1, . . . , R] and c = [1, . . . , C],
the value stored at the r-th row and c-th column of the table.
Similarly, Vr is defined as the set of all values that belong to
the r-th row, that is (vr,1, . . . , vr,C). We extend the database
schema by adding a new column to all the tables of the
database. Each row of the new column stores an encrypted
version of a control structure that allows the tenant to verify
the integrity of all the data stored in the same row. The notation
er identifies the encrypted control structure associated with
the r-th row of a table. A representation of a table modified
according to the proposed scheme is given in Table I, where
ac represents the name that is associated with the column c.

We compute er according to the following equation:

er = E(s, br), (1)

where E represents a symmetric encryption algorithm with
IND-CPA security guarantees (Indistinguishable under chosen-
plaintext attack, e.g. Blowfish [12] or AES [13] with random
IV), s is the encryption key, and br is a Bloom filter computed
over data that includes all values belonging to Vr. We assume
that all client machines used by the cloud tenant to access
and manipulate data stored on the cloud database share the
same encryption key s, that can be distributed according

to well known key distribution schemes [14], as well with
more efficient strategies that are specific to the field of cloud
databases [4], [15]. We assume that the cloud provider does
not know the value of s.

The value br is computed as:

br =
C
∨

c=1

B(ac|vr,c), (2)

where B is a function that computes a Bloom filter [16],
the operator | is the concatenation between two values, and
∨

represents the bitwise OR between the C Bloom filters
computed through B.

Our scheme can be easily integrated with previous pro-
posals for cloud database confidentiality that are based on the
encryption of all the values stored in the cloud database and
that support the execution of SQL operations on encrypted
data [3]–[5]. These related works protect tenant data against
honest-but-curious cloud providers that do not modify the
database. On the other hand, our scheme improves security by
allowing cloud tenants to detect unauthorized modifications to
its data by a malicious cloud provider. If each value vr,c stores
an encrypted value computed according to any of these pro-
posals, then the proposed scheme guarantees confidentiality,
integrity and allows the execution of SQL operations.

IV. SECURITY ANALYSIS

We describe the security guarantees provided by the pro-
posed scheme in two steps. In the former we do not consider
the effect of false positives that are inherent in Bloom filters. In
the latter we describe how our solution limits the detrimental
effects of false positives.

A. Design choices

The use of Bloom filters instead of hash or MAC functions
makes it possible to test whether a value belongs to a set
without the need to retrieve all the other values that belong
to the same set. This property is useful in the field of database
integrity, since it allows a tenant to check whether a value
belongs to a tuple by only downloading the required value
and the Bloom filter related to the corresponding row of
the database table. After having retrieved a value vr,c and
the corresponding Bloom filter br computed according to
Equation (2), then the tenant can verify that vr,c is a legitimate
value of the tuple by checking if:

br ∧ B(ac|vr,c) = B(ac|vr,c) (3)

where ∧ is the bitwise AND operator. If Equation (3) is not
verified, then the tenant has evidence that the vr,c has been
modified after the computation of br. Let us consider the
possible attacks that a malicious cloud provider could attempt
to thwart a similar scheme.

The first family of attacks is based on possible modifi-
cations to the control structures used to check data integrity.
Let us suppose that we store plaintext Bloom filters instead
of encrypted Bloom filters in the cloud database (that is, br
instead of er in Table I). Then a cloud provider could alter the
value of br to its advantage. As an example, a cloud provider
could alter any vr,c and then recompute the corresponding br to

reflect the modified values. Another attack could be performed
by setting more bits of the Bloom filter to one, thus increasing
the probability that an integrity test succeeds even for values
that are not included in the Bloom filter. Our proposal protects
data integrity against all these attacks by storing on the cloud
server a version of the Bloom filter that is encrypted with a
secret key only known to the cloud tenant. Any modification
to the encrypted Bloom filter would be easily detected by
the tenant, because the resulting decrypted Bloom filter would
have a completely random content due to our choice of using
IND-CPA encryption algorithms (see Section III).

Another possible attack is to alter tenant data by switching
the values belonging to different columns of the same row.
To prevent this attack our solution computes the Bloom filter
over a concatenation of the value vr,c and the label associated
with its column ac, as shown in Equation (2). Let us consider
a table with two columns c1 and c2, and two values stored
in the same row vr,c1 and vr,c2. The Bloom filter associated
with the row is calculated at insertion time by the tenant as
the OR of the Bloom filters B(ac1|vr,c1) and B(ac2|vr,c2). We
assume that the cloud provider switches the two values. When
the tenant requests any of the two values, he executes integrity
checks as described in Equation (3) by computing the Bloom
filters B(ac1|vr,c2) and B(ac2|vr,c1). Since these Bloom filters
are different from those calculated at insertion time, the tenant
can detect any unauthorized modifications.

B. False positives

A drawback of Bloom filters is that integrity checks may
result in false positives and allow the cloud provider to modify
the tenant database without being detected. By referring to
Equation (3), it is always true that if this equation is not
satisfied, then the value vr,c has been modified. But there
is a small probability that a modified vr,c still satisfies this
equation, thus making it impossible for the tenant to detect
the unauthorized alteration. The probability of having false
positives depends on the parameters used to build the Bloom
filter br. Bigger Bloom filters guarantee lower false positive
rates but may cause greater overheads in terms of storage
and network usages, and consequently lower performance and
increased costs of the cloud database service [17].

We propose methodologies that allow the tenant to size the
Bloom filters stored in his cloud database to choose a trade-
off between an acceptable false positive rate and resources
overheads. To this aim, we define the acceptable false positive
rate ε as the highest false positive probability that a cloud
tenant is willing to accept. For example, if the cloud tenant
deems ε = 0.01 acceptable, then the cloud provider has
only 1 chance out of 100 to modify a value without being
detected. We also observe that the probabilities of detecting
modifications of different values are independent of each other.
Hence, if the cloud provider tampers with t different values
of the database, the probability of not being detected can be
computed as εt. In the previous example, if ε = 0.01 and
the cloud provider modifies three values, the probability of
not being detected drops to 10−6. Our methodologies take as
input an acceptable false positive rate chosen by the cloud
tenant and allow the cloud tenant to size the Bloom filters.

Let us describe which parameters influence Bloom filters
false positive rates. By using the notation established in the

literature [10], we define m as the length of the Bloom filter
expressed in bits, k as the number of hash functions used
for the computation of the Bloom filter, n as the number
of elements inserted in the Bloom filter and p as the false
positive rate. The false positive rate p can be estimated as
the probability function P(m,n, k) through the following
equation [16]:

p = P(m,n, k) =

[

1−

(

1−
1

m

)kn
]k

≈ (1− e−kn/m)k

(4)

We assume that the parameters m and k of the Bloom filter
are defined at database design time and remain constant
afterwards. Moreover, we define as k̄ the number of hash
functions that minimizes p. We can obtain k̄ through the
following equation [16]:

k̄ =
m

n
· ln(2) (5)

Hence, we can define the optimum false positive rate p̄ as:

p̄ = P̄(m,n) = P(m,n, k̄) ≈ (1− e−k̄n/m)k̄ (6)

By substituting Equation (5) in Equation (6), we obtain:

p̄ ≈ (1/2)
m

n
ln2

= e−
m

n
ln(2)2 (7)

Our methodologies translate the tenant acceptable false
positive rate ε to an upper bound for the false positive
probability p̄ and for the number of elements n inserted in
the Bloom filter, and provide as outputs the size of the Bloom
filters m and the number of the optimal hash functions k̄. The
tenant should choose the methodology by considering the type
of SQL operations that are issued to the database. In particular,
we distinguish two scenarios: a database on which values are
only created, read, and deleted (CRD); a database on which
values may be created, read, updated, and deleted (CRUD).

In the CRD scenario, the false positive rate p̄ depends only
on the parameters m and n used to build the Bloom filter,
and does not change during the lifetime of the database. We
observe that n is equal to the number of columns C belonging
to a table. In this scenario the tenant is interested in using the
smallest possible Bloom filter that satisfies the upper bound
on the acceptable false positive rate, thus reducing storage
overhead. We define mmin as the optimal value for m in the
CRD scenario such as:

mmin = min{m ∈ N : P̄(m,C) < ε} (8)

The tenant can compute mmin by using the following equation:

mmin =

⌈

−
C · ln(ε)

ln(2)2

⌉

(9)

that is the inverse of the Equation (7) in which p̄ = ε and
n = C. Then, the cloud tenant can compute k̄ by substituting
mmin and C to m and n in Equation (5).

In the CRUD scenario, we also need to handle update
operations that represent authorized modifications of tenant
data that are already stored in the cloud database. Update
operations can be executed according to two strategies: Always
renew and Greedy renew.

Always renew. Whenever a value needs to be updated, the
tenant also retrieves all the other values of the same row and
recomputes the corresponding encrypted Bloom filter. In this
strategy the value of n does not change over the lifetime of a
Bloom filter, hence the false positive rate p remains constant
and the computation of mmin falls back to Equation (9) of the
CRD scenario. However, the tenant has to retrieve unnecessary
values every time that a single value is updated, thus incurring
in a higher network overhead.

Greedy renew. The tenant builds the Bloom filter with
a value of m > mmin. Hence, the false positive rate p
remains smaller than the ε chosen by the tenant even after the
insertion of new values in the Bloom filter. The tenant can then
update a value by adding the new value to the Bloom filter,
without the need to retrieve all the other values of the same
row. Since the tenant does not need to download unnecessary
values, the network overhead is minimized. However, the value
of n increases over the Bloom filter lifetime, thus causing
an increase of p. To satisfy the acceptable false positive
requirement imposed by the tenant, it is necessary to renew
the Bloom filter before p exceeds the maximum acceptable
false positive rate ε. We assume that the tenant knows how
many values have been updated for each row, hence he also
knows the false positive rate p associated with each row of the
database. Whenever a new update would cause p to exceed ε,
the tenant has to renew the Bloom filter, thus restoring p to its
original value. We define u as the maximum number of values
that the tenant can update while keeping p < ε.

We now propose a method that the tenant can use to
compute u as a function of C, ε and m. A fresh Bloom filter
corresponding to a row already includes C values, hence the
tenant can perform exactly u = nmax − C updates before
executing a greedy renew. The tenant can compute nmax using
the following equation:

nmax =

⌊

−
m · ln(2)2

ln(ε)

⌋

(10)

that is the inverse of the Equation (7) in which p̄ = ε. Then,
the cloud tenant can compute k̄ by substituting nmax to n in
the Equation (5).

The only other parameter that the tenant has to define to
build the Bloom filter is m. A lower bound for m is represented
by mmin, as computed from Equation (9). In particular, for
m = mmin, the tenant has to perform a greedy renew for
every update, thus falling back to the always renew strategy.
As an example, in this scenario the cloud tenant can estimate
a value of mmin by multiplying C by a factor of 10 for an
acceptable false positive rate ε of 0.01 [16]. On the other hand,
higher values of m reduce the network overhead for update
operations, but increase both storage and network overheads in
the case of select and insert operations. The choice of the best
value for m depends on the acceptable false positive rate, the
workload, the database structure, and on the trade-off between
storage and network overheads. In the following section we
propose extensive performance analyses and we demonstrate
that our proposal leads to a good trade-off between storage
and network overheads in realistic workloads.

V. PERFORMANCE ANALYSIS

To analyze the performance of the proposed solution we
compare its storage and network overheads to those of other
two solutions for the integrity of outsourced databases that are
proposed in literature and commonly adopted in practice.

The first solution is to extend the approaches that are
devised for remote file storage [11] to the cloud database
scenario. The integrity of files stored in the cloud is usually
achieved by associating to each file a HMAC computed
through standard hash functions, such as SHA-256. This
approach can be trivially applied to the cloud database scenario
by computing a HMAC for each value stored in the database.
This solution causes a high storage overhead because a 256-
bit HMAC is bigger than many primitive data types. Its main
benefit is that the cloud tenant can verify the integrity of a
value without having to retrieve other unnecessary values from
the remote database. In the performance evaluation we refer
to this solution as VLH (value-level HMAC).

The second solution is an optimization of VLH for the
cloud database context that has been proposed in [8], [9]. The
main idea is to reduce the storage overhead by associating a
control structure (such as a SHA-256 or a HMAC) to a set
of values, rather than to a single value. In the cloud database
context, a HMAC is computed over all the values that belong
to the same row. The resulting scheme has the same structure
of Table I, but the last column is used to store a HMAC rather
than an encrypted Bloom filter. In the following we refer to
this solution as TLH (tuple-level HMAC). This approach has
a clear benefit in terms of storage overhead with respect to the
VLH solution. However, whenever the tenant wishes to verify
the integrity of a single value, he has to retrieve also all the
other values stored in the same row to compute the HMAC.
The need to retrieve unnecessary values causes an increase in
the network overhead.

To compare performance of our approach against those
of VLH and TLH we need to pick realistic values for the
acceptable false positive rate (ε) and for the size of the Bloom
filter (m). In this evaluation, we assume that ε = 0.01 is
an acceptable value for the tenant. We estimate m for the
greedy renew strategy by multiplying the number of columns
C by a factor of 20. Storage overhead introduced in the greedy
renew strategy may double that of the always renew strategy.
However, it allows the cloud tenant to greatly reduce the
network overhead. The computation of the optimal m is left
as a future work. In the following we refer to the proposed
solution as EBF (encrypted Bloom filter).

We first analyze the performance of different SQL queries
by referring to a synthetic example, and then we analyze
the storage and network overheads of a realistic scenario by
referring to the TPC-C workload [6].

A. Single operations workload

In this analysis we refer to a database table in which each
row is 500 bytes long, and contains 10 values. For the sake of
simplicity, we assume that all values have the same size, and
we choose m = 192. Since we encrypt the Bloom filter using a
standard Blowfish 64-bit cypher [12] with a 64-bit initialization
vector, the resulting encrypted Bloom filter is 192 + 64 =

256-bit long. We highlight that this is the same size of an
HMAC computed using SHA-256. By using Equation (10) we
can compute nmax = 20. Moreover, through Equation (5) we
compute that the optimal number of hash function to build the
Bloom filter in this scenario is k̄ = 7. Hence, the Bloom filter
needs to be refreshed after the insertion of 20 values. In the
proposed example, C = 10, hence it is possible to perform
u = nmax − C = 10 updates to values stored in the same
row without having to renew the corresponding Bloom filter.
By using Equation (6), we can estimate that the false positive
rate p for n = C = 10 is 0.000248, and for n = nmax = 20
is 0.00997 < ε = 0.01. In this example, the storage overhead
introduced by EBF is exactly the same of TLH, and 35.12%
lower than VLH. We now investigate the network overhead
introduced by the four basic CRUD operations.

CREATE. It is an INSERT SQL operation in which the
tenant creates a new row in a table. In this scenario, all the
values of the row and all the corresponding control structures
(HMACs for VLH and TLH, encrypted Bloom filters for EBF)
have to be transmitted from the client to the cloud database.
The network bandwidth consumed by EBF is the same of TLH,
while there is a 35.12% reduction with respect to VLH.

READ. It is a SELECT SQL operation used by the
tenant to access values stored in the cloud database. Table II
summarizes the number of bytes that need to be downloaded by
the tenant for different strategies and types of SELECT queries.
The first row shows the bytes downloaded in the case of a
SELECT query in which the tenant needs only one value. The
performance of EBF and VLH are optimal, since the tenant
only needs to retrieve the needed value and the associated
control structure. The other corner case is represented by
SELECT queries used to read all the values of a row. In this
case the performance of EBF and TLH are optimal, while
VLH incurs in a high network overhead since the tenant has
to retrieve one control structure for each value. If the SELECT
query is used to access only a subset of data, then EBF has
a clear advantage over both TLH and VLH, as shown by the
second row of Table II in which the tenant needs 5 of the 10
values that compose a row.

SELECT TLH V LH EBF
EBF

TLH
− 1

EBF

V LH
− 1

One value 532 82 82 82.59% 0.00%

Half values 532 410 282 46.99% 31.22%

All values 532 820 532 0.00% 35.12%

TABLE II: Bytes transmitted and overheads of SELECT
queries

UPDATE. It is an UPDATE SQL operation, that the
tenant uses to modify one or more values belonging to the
same row. As already shown for READ operations, if TLH
is used the tenant always has to read all the values of the
row independently of the number of values that are actually
modified, because he has to compute the new HMAC. On the
other hand, if VLH is used, the tenant has to upload a new
HMAC for each value. EBF reduces the network overhead
since the tenant does not need to download useless values and
always uploads one control structure. However, we must take
into account that, since u = 10, after ten updates it is necessary
to renew the Bloom filter. This operation requires the tenant to

download all the values that belong to the same row. Table III
shows how many bytes have to be transmitted to perform
UPDATE queries using TLH, VLH and EBF strategies. If
updates always modify a single value, the worst scheme is
TLH. EBF performs better than TLH (73.07%) but worse than
VLH (-74.72%), because EBF has to periodically renew the
encrypted Bloom filter. If updates always modify all values in
the row, then TLH and EBF have the better network usage
reduction (35.12%). Finally, if update queries modify a subset
of values, EBF outperforms both VLH and TLH.

UPDATE TLH V LH EBF
EBF

TLH
− 1

EBF

V LH
− 1

One value 532 82 143 73.07% -74.72%

Half values 532 410 325 38.89% 20.71%

All values 532 820 532 0.00% 35.12%

TABLE III: Bytes transmitted and overheads of UPDATE
operations

DELETE. It does not involve data transfer, so there are no
differences in using TLH, VLH or EBF.

B. Mixed operations of the TPC-C workload

To analyze how EBF performs in real-world scenarios, we
consider the query distribution of TPC-C [6], that is a standard
OLTP benchmark for databases. To determine proper sizes for
the Bloom filters we analyze the structure of all the tables of
the TPC-C database. For each table we set a value for m that
allows to modify a number of values equal or greater than the
number of columns. As an example, let us consider the table
history that contains 8 columns. For this table we choose a
value for m that makes it possible to update at least 8 values. In
this example, m is set to 192 bits, thus leading to a 192+64 =
256-bit encrypted Bloom filter for all the rows of the table. We
then compute the tuple size in the following configurations:
no integrity (that is, the plain TPC-C database scheme), tuple-
level HMAC (TLH), value-level HMAC (VLH) and encrypted
Bloom filter (EBF). These values are summarized in Table IV.
By computing a synthetic storage overhead for all the TPC-C
tables we have that storage needs for EBF are slightly higher
than TLH (+4%), and much smaller than VLH (-59%).

To assess network overheads we consider the average
traffic generated by TPC-C. We take into account all queries
and weigh their network usage according to their probability
distribution. The results are shown in Table V. The network
usage of INSERT queries is only influenced by the size of
the control structures used to check data integrity. Hence,
EBF has a slight advantage with respect to TLH (network
consumption is 7.5% lower), but a huge advantage with respect
to VLH (75% lower). In the case of SELECT operations, traffic
is dominated by almost complete row transfers of relatively
large tuples; in particular, SELECT operations that request one
attribute are infrequent and their traffic contribution is low. As
a result, EBF performs better than TLH (by 27%) and VLH
(by 42%). For UPDATE operations EBF reduces the amount
of network traffic by 72% with respect to TLH, while causing
a 50% increment with respect to VLH. If we consider the
total network traffic by aggregating all results, our solution

Table warehouse district item customer history stock orders new orders order line

Number of values 9 11 5 21 8 17 8 3 10

Allowed updates (ε = 1%) 11 9 8 19 12 23 12 3 10

EBF size (bytes) 32 32 24 56 32 56 32 16 32

Tuple size
(bytes)

VLH 421 491 272 1415 304 950 284 104 384

TLH 165 171 144 775 80 438 60 40 96

EBF 165 171 136 799 80 462 60 24 96

Storage Reduction
(EBF vs)

VLH 61% 65% 50% 44% 74% 51% 79% 77% 75%

TLH 0% 0% 0% 6% -3% 0% -5% 40% 0%

TABLE IV: Analysis of the tables of a TPC-C compliant database

Traffic INSERT SELECT UPDATE TOTAL

TLH 95.60 1713.59 1122.27 2928.74

VLH 350.32 2166.01 209.32 2715.89

EBF 88.40 1252.05 313.16 1671.09

EBF/TLH-1 7.5% 27% 72% 43%

EBF/VLH-1 75% 42% 50% 38%

TABLE V: Network consumption (bytes) and overheads of the
TPC-C workload

has an average traffic reduction of 38% against VLH, and 43%
against TLH. In summary, EBF outperforms any other integrity
solution whenever the distribution of database operations is
similar to those outlined in TPC-C.

VI. CONCLUSIONS

Public cloud databases are appealing services that allow
companies to outsource data management infrastructures, but
their adoption is hindered by concerns about confidentiality
and integrity of information managed by a third subject.

We propose a novel strategy that allows cloud tenants to de-
tect unauthorized modifications to data outsourced to untrusted
cloud providers. This solution is based on encrypted Bloom
filters. We demonstrate that its storage overhead is comparable
or smaller than other solutions for database integrity and its
network overhead in realistic usage scenarios is consistently
smaller. Our analysis also demonstrates that encrypted Bloom
filters are attractive especially in the case of metered network
traffic, that is very common in current commercial cloud
storage offers. The proposed solution allows the tenant to tune
the trade off between the probability of detecting unauthorized
data modifications and storage and network overheads. A
formal analysis of the best choice of the parameters on the
basis of tenant preferences is left to future works.

REFERENCES

[1] W. Jansen and T. Grance, “Guidelines on security and privacy in public
cloud computing,” Tech. Rep. NIST Special Publication 800-144, 2011.

[2] S. A. Almulla and C. Y. Yeun, “Cloud computing security management,”
in Proc. Second IEEE Int’l Conf. Engineering Systems Management and

Applications, Mar.-Apr. 2010.

[3] L. Ferretti, M. Colajanni, and M. Marchetti, “Distributed, concurrent,
and independent access to encrypted cloud databases,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 25, no. 2, 2014.

[4] ——, “Access control enforcement of query-aware encrypted cloud
databases,” in Proc. Fifth IEEE Int’l Conf. on Cloud Computing

Technology and Science, Dec. 2013.

[5] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted query processing,”
in Proc. 23rd ACM Symp. Operating Systems Principles, Oct. 2011.

[6] TPC-C, “Transaction processing performance council,” http://www.tpc.
org, Apr. 2014.

[7] H. Hacigümüş, B. Iyer, and S. Mehrotra, “Providing database as a
service,” in Proc. 18th IEEE Int’l Conf. Data Engineering, Feb. 2002.

[8] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and
integrity in outsourced databases,” ACM Transactions on Storage, vol. 2,
no. 2, 2006.

[9] R. Accorsi and S. Ranise, “Rdas: A symmetric key scheme for authen-
ticated query processing in outsourced databases,” in Proc. Ninth Int’l

Work. Security and Trust Management, Sep. 2013.

[10] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Comm. of the ACM, vol. 13, no. 7, 1970.

[11] T. Adtiya, P. Baruah, and R. Mukkamaka, “Space-efficient bloom filter
for enforcing integrity of outsourced data in cloud environments,” in
Proc. Fourth IEEE Int’l Conf. Cloud Computing, Jul. 2011.

[12] B. Schneier, “Description of a new variable-length key, 64-bit block
cipher (blowfish),” in Proc. Cambridge Security Work. Fast Software

Encryption, Dec. 1993.

[13] J. Daemen and V. Rijmen, The design of Rijndael: AES – the advanced

encryption standard. Springer, 2002.

[14] C. Blundo, A. Cresti, and U. Vaccaro, “Key distribution schemes,” in
Proc. 1994 IEEE Int’l Symp. Information Theory, Jun.-Jul. 1994.

[15] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: management of access control evolution
on outsourced data,” in Proc. 33rd Int’l Conf. Very Large Data Bases,
Sept. 2007.

[16] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet Mathematics, vol. 1, no. 4, 2004.

[17] L. Ferretti, F. Pierazzi, M. Colajanni, and M. Marchetti, “Performance
and cost evaluation of an adaptive encryption architecture for cloud
database services,” IEEE Trans. on Cloud Computing, vol. Preprint,
2014, Doi: 10.1109/TCC.2014.2314644.

