
1

Scalable Architecture for
Online Prioritisation of
Cyber Threats

Abstract: Detecting advanced attacks is increasingly complex and no single solution can
work. Defenders can leverage logs and alarms produced by network and security devices, but
big data analytics solutions are necessary to transform huge volumes of raw data into useful
information. Existing anomaly detection frameworks either work offline or aim to mark a
host as compromised, with high risk of false alarms. We propose a novel online approach that
monitors the behaviour of each internal host, detects suspicious activities possibly related to
advanced attacks, and correlates these anomaly indicators to produce a list of the most likely
compromised hosts. Due to the huge number of devices and traffic logs, we make scalability
one of our top priorities. Therefore, most computations are independent of the number of hosts
and can be naively parallelised. A large set of experiments demonstrates that our proposal can
pave the way to novel forms of detection of advanced malware.

Keywords: autonomous triage, early prioritisation, security analytics, scalability

Fabio Pierazzi
Department of Engineering ‘Enzo Ferrari’
University of Modena and Reggio Emilia
Modena, Italy
fabio.pierazzi@unimore.it

Michele Colajanni
Department of Engineering ‘Enzo Ferrari’
University of Modena and Reggio Emilia
Modena, Italy
michele.colajanni@unimore.it

Mirco Marchetti
Department of Engineering ‘Enzo Ferrari’
University of Modena and Reggio Emilia
Modena, Italy
mirco.marchetti@unimore.it

Giovanni Apruzzese
Department of Engineering ‘Enzo Ferrari’
University of Modena and Reggio Emilia
Modena, Italy
giovanni.apruzzese@unimore.it

Alessandro Guido
Department of Engineering ‘Enzo Ferrari’
University of Modena and Reggio Emilia
Modena, Italy
alessandro.guido@unimore.it

2017 9th International Conference on Cyber Conflict
Defending the Core
H. Rõigas, R. Jakschis, L. Lindström, T. Minárik (Eds.)
2017 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal use within
NATO and for personal or educational use when for non-profit or non-commercial
purposes is granted providing that copies bear this notice and a full citation on the
first page. Any other reproduction or transmission requires prior written permission
by NATO CCD COE.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

2

1. InTrOduCTIOn

The information systems of modern organisations are subject to a multitude of cyber attacks
conceived by a wide range of attackers with different goals, capabilities and motivations.
Despite all the efforts spent on preventive defences, the reality is that attacks occur every day
and no organisation can consider itself secure. This paper shifts the focus from the prevention
to the detection phase.

Existing proposals in academic literature detect specific attacks through heuristics and statistical
analysis (e.g., [1, 2, 3, 4]). Most approaches (e.g., [2, 5]) rely on offline post-event analysis.
Other online anomaly detectors assume that statistically detectable changes involve huge
numbers of hosts (e.g., worm propagation in [6, 7]) or that compromised hosts share similar
behaviours (e.g., botnet detection in [8, 9, 10, 11]). However, these assumptions are no longer
true in modern human-driven advanced cyber attacks [12], hence existing proposals can be
affected by many false positive and false negative alarms.

As no security operator wants to be annoyed by hundreds of alarms notified at the same priority
level, we take a different direction and focus on ranking suspicious hosts instead of detecting
compromised hosts. To this end, our online analysis begins by monitoring the behaviour of
individual hosts over time and by identifying suspicious events involving even single or few
hosts. These indicators are aggregated to produce a ranking of the most suspicious hosts, which
are then provided to the security operator in a timely fashion.

Due to the massive amount of data to be managed online, we propose a scalable design and
implementation of our approach. All initial phases before the final aggregation scale linearly
with the number of hosts and can be parallelised. The proposed approach is general enough to
be adopted with different types of data, including internal traffic, external traffic, alarms coming
from IDS and SIEM, yet the goal of this paper is not to present a complete framework, but
rather to propose the idea that the combination of autonomous triage with manual inspection
increases the probability of detecting even advanced attacks. For these reasons, we present
our approach relying only on network flows of internal corporate traffic, whose effectiveness
is shown through experiments applied to networks of more than 1,000 hosts. We consider five
main attack scenarios, representative of the activities that an attacker will likely perform from
a compromised internal host: reconnaissance; data transfer to a dropzone; man in the middle;
watering hole through DNS spoofing; and lateral movement through pivoting.

Section 2 of this paper presents related work. Section 3 outlines the main components and
functions of the proposed approach. Section 4 describes the analytics core that extracts useful
information and builds layer models from raw network data. Section 5 presents five examples
of prioritisation algorithms that leverage outputs produced by the analytics core, along with
results from real testbed networks. Section 6 concludes the paper with some final remarks and
suggestions for future work.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

3

2. relATed WOrk

Detecting advanced cyberattacks is increasingly difficult, as attackers have several ways
to penetrate a network and hide their activities. The huge volume of logs generated by the
multitude of servers, firewalls and devices are useful only when integrated with security
analytics systems for automatic detection and triage. Considering the attacker’s ability and the
difficulty of signalling an infected host without causing false alarms, in the area of security
analytics we propose an innovative approach. Instead of signalling an impossible ‘guaranteed’
detection, our system ranks the most suspicious hosts and leaves to the security analyst the
task of inspecting a manageable number. Additional features include online processing for
early prioritisation and scalability over thousands of hosts, as most analyses can be carried out
independently for each host. The proposed approach can be applied on alerts and logs derived
by IDS [13, 14], SIEM and other security appliances, and can be integrated with external traffic
analyses; but in this paper we present a brand-agnostic approach based exclusively on flows of
internal network traffic.

We identify three main areas of related works: offline forensics analysis, advanced malware
detection, and online traffic monitoring.

The large majority of related proposals in the literature concern offline analysis for forensics
purposes that differ from our online approach. Just to give some representative examples,
we can cite [2] on heterogeneous logs analyses, [5] for its original graph-based approach for
forensics, BeeHive [3], which correlates logs through histogram analysis to identify suspicious
activities and corporate policy violations, [15] on forensics for cloud environments, and [16] on
mobile forensics. Literature on advanced malware detection focuses on specific attack sequence
patterns based on past APT campaigns [17, 18, 19, 20, 21], instead of detecting suspicious
activities in each possible phase of an attack. Other more general solutions [17, 18] share our
idea of prioritising suspicious hosts, but they are designed for offline or batch analysis.

The proposals based on online analyses focus on detection of DDoS [24, 25, 26], worm
propagation and botnets, and these last two are the most related to our work. In worm propagation
detection [7, 27], the internal network is usually modelled as a graph, where huge changes in
the overall structure are identified as possible infection propagations. These works differ from
our proposal because they focus on a specific threat, and their analyses look for huge changes
in traffic volumes and patterns, whereas we prioritise signals of malicious activities related to
behavioural changes of individual hosts. Our solution is scalable with respect to the number of
monitored hosts, while worm propagation analysis depends on the size of the network graph.
Botnet detection proposals [8, 9, 10, 11] are based on online scalable solutions for finding hosts
that are possibly compromised. However, their underlying assumption is that a large number
of hosts are compromised and share similar network behaviour, which is not true in the case of
advanced cyberattacks where only a few hosts may be compromised and malicious actions are
often human-driven.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

4

In summary, we can outline the major contributions that differentiate our work with respect to
the state of the art:

• ranking of suspicious activities instead of specific detection(s);
• online analysis instead of offline post-mortem analysis;
• analysis based on individual host behaviour that guarantees parallel analyses and

scalability; and
• the possibility of capturing suspicious actions involving even a few hosts.

3. FrAmeWOrk OvervIeW

We aim to detect anomalous network activities concerning each host of a corporation, and to
use this information to rank the most suspicious hosts. In this section, we outline the proposed
architecture and design choices for achieving scalability. Figure 1 emphasises that the input
is represented by raw network data gathered by internal probes. Without loss of generality, in
this paper we only consider network flows of traffic among internal hosts, which are feasible
to collect and analyse for online contexts [28]. These logs are processed through three main
steps: analytics core, attack prioritisation and autonomous triage. The final output is a list of
internal hosts ranked by a risk score representing the likelihood that each host is involved in
one or more attacks.

FIGURE1. FRAMEWORK OVERVIEW

Starting from raw network data, the analytics core builds different layers, which are graph
models whose nodes represent internal hosts and edges represent a metric of interest. Each layer
portrays a different perspective of the events occurring in the monitored network. For example,
if we consider three layers, then edges may represent the number of packets, the number of
bytes, and the average duration of the transmissions between two hosts, respectively. Then, the
analytics core applies anomaly detection algorithms to the activities of each internal host within
each layer. This fine-grained analysis is motivated by the observation that an attack related to a
single host within a large internal network causes very small alterations that are not visible in
an aggregated model comprising all layers and all hosts. Similar ‘global’ approaches work well
only to identify massive attacks or network-wide anomalies [29, 4].

As a further advantage, since anomaly detection in different layers and hosts can be performed
in parallel, the analytics core scales linearly with respect to the number of monitored hosts and

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

5

layers. In this way, we can extend and improve an instance of the framework by adding more
layers and nodes without having to change the information flow and the overall architecture.
The algorithms adopted by the analytics core for layers modelling and anomaly detection are
presented in Section 4.

The attack prioritisation module takes as its input the anomalies identified by the analytics core,
and correlates them with the goal of detecting different attack scenarios, each one corresponding
to activities that an attacker may perform from a compromised internal host. It is also possible
to include novel attack detection algorithms with limited computational effort, because they can
leverage the common fine-grained analyses already performed by the analytics core. The details
of the attack prioritisation algorithms are discussed in Section 5.

The output of the attack prioritisation module is a risk score assigned to each internal host
for each considered attack. Attack-specific risk scores for all hosts represent the input of the
autonomous triage module which aids security operators by visualising the few hosts with
higher ranks and the attacks in which they are likely involved.

4. AnAlyTICS COre

This section describes the algorithms used by the analytics core for layers modelling and for
anomaly detection within each layer. The objective is to identify statistical anomalies for each
host in all the layers, which will be correlated and ranked by the attack prioritisation module.
The analytics core is designed for online processing and scalability.

A. Layers Modelling
Raw data is collected from the probes as soon as it is produced, and temporarily stored for
a time defined by the current time window of size Δ. If 𝑡 denotes the current time, then the
layers modelling module maintains all raw data generated between 𝑡 −Δ and 𝑡 . Since previous
research shows that most network activities are characterised by a daily periodicity [29, 23], it
is convenient to set Δ equal to one day. At every sampling interval 𝜏, all raw data in the current
time window is used to compute the current representation of all layers. Since anomalies can be
detected only after their appearance in the current representation of a layer, ‘early’ prioritisation
is influenced by the choice of the parameter 𝜏 that is conveniently chosen in the order of a few
minutes. Lower values cause useless oversampling of data (as an example, Netflow records
related to long-lived connections are refreshed every 2 minutes [30]), while higher values
introduce detection delays. We use the notation 𝐿𝑖(𝑡) to identify the current representation of
the layer 𝑖, built using raw data in the current time window.

As shown in Figure 2, each 𝐿𝑖(𝑡) is modelled as a graph whose nodes represent hosts of the
internal network, and edges denote some specific features of network activities occurring
between the two hosts. As an example, a layer representing the number of bytes exchanged
between internal hosts can be defined as a directed and weighted graph, in which edge direction
denotes the direction of data transfer (from source to destination) and the weight represents the
amount of transferred bytes.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

6

FIGURE 2. ACTIVITIES OF THE LAYER MODELLING MODULE

Table 1 reports the list of considered layers and their descriptions. These characteristics are
commonly adopted to identify anomalies in traffic [31]. For example, time series of flows,
packets, bytes and ports are used to identify reconnaissance activities [6] and data exfiltration
[23]; graphs of internal communications are adopted for identification of worm propagation [7];
ARP messages can be useful for detecting eavesdropping activities [32].

TABLE 1. CONSIDERED LAYERS

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes
that exchange packets using any protocol. Direction is from source to target, and
the weight of the edge is the total number of packets transmitted.

Packets

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes
that exchange packets using any protocol. Direction is from source to target, and
the weight of the edge is the total number of bytes transmitted.

Bytes

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes
that exchange packets using any protocol. Direction is from source to target, and
the weight of the edge is the total number of network flows.

Flows

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes
communicating through TCP or UDP protocols. Direction is from source to target,
and the weight of the edge is the number of different destination port numbers.

Ports

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes
that exchange packets using any protocol. Direction is from source to target, and
the weight of the edge is the average duration of network flows.

Durations

Directed unweighted graph. Nodes are internal
hosts and edges connect 2 nodes that exchange
IP datagrams. Direction is from source to target.

Conns

Bipartite directed graph. Both sets of nodes represent internal hosts. Edges
connect each host from the first set to the hosts of the second set reachable
by it through a ‘path’ composed of at least 3 hosts.

Paths

Bipartite directed graph. One set of nodes represents hostnames of internal hosts,
the other set of nodes represents IP addresses. Edges connect a hostname to the
associated IP address in DNS resolutions.

DNS

Bipartite directed graph. One set of nodes represents IP addresses of internal
hosts, the other set of nodes represents MAC addresses. Edges connect the IP
address and the MAC address that are bound as part of an ARP transaction.

ARP

Layer Description

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

7

The representations of all layers are passed as input to the processing modules that perform
anomaly detection.

B. Layer Anomaly Detection
The goal is to identify hosts that exhibit anomalous behaviours in any of the layers. This step
does not depend on identifiable attacks nor on the feature represented by each layer, hence
all layers are subject to the same anomaly detection algorithms, which can be executed in
parallel and independently. For each layer, we adopt two complementary detection approaches,
as shown in Figure 3: the former identifies quantitative anomalies and state changes; the latter
detects novel or uncommon events.

FIGURE 3. STRUCTURE OF A LAYER ANOMALY DETECTION MODULE

The former approach processes all current layer representations 𝐿𝑖(𝑡) . The goal is to extract
scalar values from graphs and to build time series. For each host, the framework computes two
scalar values: the weighted in-degree and the weighted out-degree [33] representing the number
of incoming and outgoing connections of each host in the current layer, respectively. Since a
new 𝐿𝑖(𝑡) is received by the layer anomaly detection module (one at every sampling interval 𝜏),
scalar values for consecutive 𝐿𝑖(𝑡) are used to build two current time series representing recent
values of in-degree and out-degree for each host. If 𝑡 denotes the current instant of time, the
current time series includes values between 𝑡 −Δ and 𝑡 . Moreover, to perform anomaly detection,
it is necessary to build two historical time series including older scalar values between 𝑡 −𝑊
and 𝑡 −Δ (excluded), where 𝑊 represents the size of the historical window. 𝑊 should be large
enough (in the order of few weeks) to have a reliable baseline for the past behaviour of each
host [28]. We observe that traffic among internal hosts exhibits more stability with respect to
traffic among internal and external hosts, characterised by higher variability and consequent
difficulties to achieve stable baseline models [29]. Anomaly detection is performed on each
current time series through the online and adaptive detection algorithm proposed in [28] trained
over the period 𝑊. This algorithm identifies both point anomalies and state changes [1] that
reflect different kinds of relevant deviations between the current and past behaviours of an
internal host.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

8

The latter approach (cf. Figure 3) identifies new edges that never appeared in the historical
window. For example, these edges may represent novel persistent connections of an attacker
trying to perform lateral movement activities. For each 𝐿𝑖(𝑡) , the detection algorithm computes
its current adjacency matrix [33], which is a mathematical representation of the edges in 𝐿𝑖(𝑡) ,
whose rows and columns represent the internal hosts: the matrix element (𝑗, 𝑘) is set to 1 if 𝐿𝑖(𝑡)
has an edge from host 𝑗 to k; to 0 otherwise.

Older versions of the current adjacency matrix, built on previous 𝐿𝑖(𝑡) belonging to the
historical time window 𝑊, are used to compute the historical adjacency matrix. Its values are
rational numbers between 0 and 1. In particular, (𝑗, 𝑘) denotes the frequency of occurrence of
the edge from 𝑗 to 𝑘 in the older instances of 𝐿𝑖(𝑡) . For example, the value (𝑗, 𝑘) is set to 1 if
all older instances of 𝐿𝑖(𝑡) layer contain an edge from j to k; if one-fifth of older 𝐿𝑖(𝑡) layers
include an edge from j to k, then the value (𝑗, 𝑘) is set to 0.2. The historical time window is
updated every Δ.

At every sampling interval 𝜏, the detection algorithm subtracts the historical adjacency matrix
to the current adjacency matrix. The result, defined as novelty matrix, allows an immediate
identification of new or uncommon edges that are present in 𝐿𝑖(𝑡) , but never or seldom appeared
in the historical time window. Uncommon edges having a low value in the historical adjacency
matrix will result in values that are close to 1 in the novelty matrix; common edges with high
values in the historical adjacency matrix will result in values close to 0 in the novelty matrix.
The layer anomaly detection algorithm can sum the values included in each row of the novelty
matrix to evaluate the ‘novelty’ of all the edges starting from the corresponding host. Similarly,
the ‘novelty’ of all edges that end in any internal host is computed by summing the values on
the corresponding column of the novelty matrix.

Anomalies, state-changes and novel edges detected by the analytics core are then used by the
algorithms which evidence malicious activities and prioritise them.

5. ATTACk PrIOrITISATIOn And rAnkIng

The main goal is to prioritise signals of malicious activities that may be part of an advanced
attack. To this purpose, we correlate the anomalies, state-changes and novel edges detected by
the analytics core.

A. Experimental Testbed
There are several possible indicators associated with malicious activities. In this paper, we
consider: reconnaissance (R); data transfer to a dropzone (DTD); man in the middle (MITM);
watering hole through DNS spoofing (WH); and lateral movement through pivoting (LM).
Table 2 indicates which layer models are included in the analysis of each attack scenario. The
presence of multiple layers increases confidence that a suspicious activity is actually occurring.
The attack prioritisation module evaluates a risk score for each internal host by combining
the anomalies, state-changes and novel edges detected by the analytics core. We refer to the
following notations:

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

9

• 𝑨𝑳𝒊
𝒊𝒏 (resp. 𝑨𝑳𝒊

𝒐𝒖𝒕) denotes the intensity of the biggest point anomaly in the incoming
(resp. outgoing) time series related to layer 𝐿𝑖 of an internal host during the observed
window [3]. For example, a burst in the outgoing bytes.

• 𝑪𝑳𝒊
𝒊𝒏 (resp. 𝑪𝑳𝒊

𝒐𝒖𝒕) denotes the intensity of possible state-changes in the incoming
(resp. outgoing) time series related to layer 𝐿𝑖 of an internal host. For example, a
state-change is detected if the average number of packets in the current window
doubles for an extended period (hence, it is not only a point anomaly [4]).

• 𝑵𝑳𝒊
𝒊𝒏 NLiin (resp. 𝑵𝑳𝒊

𝒐𝒖𝒕) denotes the number of new incoming (resp. outgoing) edges
of an internal host in the graph of layer 𝐿𝑖. For example, it can be used to detect the
number of newly contacted hosts in the current time window.

All formulas and scores in this section are computed for each host.

TABLE 2. LAYERS USED TO PRIORITISE DIFFERENT TYPES OF ATTACKER ACTIVITIES

In the experiments, we consider an internal network consisting of more than 1,000 hosts
composed of about 800 clients and 200 servers. The client machines have heterogeneous
operating systems including several versions of Mac OS, Linux and Windows. The server
machines host mainly websites and DBMS, but also high performance computations, code
versioning and NAS storage. We place monitoring probes in the main 1Gbit switches of the
network. Our algorithms are executed on a cluster of eight blades, each having an Intel Xeon
2.6GHz CPU and 16GB of RAM. Network flows are sampled every five minutes.

To evaluate scalability, we consider three scenarios consisting of 96, 287 and 1,012 hosts,
respectively. One cluster node is sufficient for computations related to 96 and 287 hosts, while
four nodes are necessary for the scenario with 1,012 hosts. This scalability is achieved because
all computations of the analytics core are performed independently for each host and for each
layer. Operations of the attack prioritisation module do not scale linearly, but their computational
cost is negligible with respect to the anomaly detection algorithms of the analytics core. We
present the details of the prioritisation of the five attack scenarios, and how risk scores are
shown to the security operators.

B. Prioritisation of Suspicious Activities
For each scenario, we inject multiple attacks in some hosts of the network, we apply our
analytics and evaluate a risk score for each host.

Attack

Reconnaissance

Data transfer

MITM

Watering hole

Lateral movement

ARP

X

DNS

X

Paths

X

Conns

X

X

X

X

Durations

X

X

X

X

Ports

X

Flows

X

X

Bytes

X

X

Packets

X

X

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

10

1) Reconnaissance in Internal Network
An attacker having control of an internal host likely scans neighbour hosts looking for (known
or zero-day) vulnerabilities [6, 26]. We define the risk score 𝑅 for reconnaissance as follows:

A higher value of 𝑅 denotes a higher likelihood that an internal host is performing a scan.
Intuitively, when an internal host performs a reconnaissance activity, the average duration of
its connections decreases (due to many volatile communications) while the numbers of flows,
ports and contacted hosts increase. To evaluate the risk score for this attack, we carry out
reconnaissance activities from 10 hosts by varying the scan intensity in terms of number of
scanned hosts and ports, as described in Table 3.

TABLE 3. RECONNAISSANCE ATTACKS INJECTED IN THE INTERNAL NETWORK FROM 10 HOSTS

Since our approach focuses on prioritisation, we evaluate how many times an internal host
performing the attack is ranked within the top-K hosts. Table 4 reports the results of multiple
experiments executed over several weeks, where each row represents the percentage of times an
internal host performing the attack has been ranked within the top-K. Each column corresponds
to horizontal, vertical, or block scan experiments as described in Table 3.

TABLE 4. PERCENTAGE OF TIMES A HOST PERFORMING A RECONNAISSANCE IS RANKED WITHIN
THE TOP-K

Table 4 shows that in more than 99% of the cases a host performing a reconnaissance activity is
ranked within the top-10. Horizontal scans are easier to detect because they span over multiple
hosts, whereas vertical scans are harder because it is more common for clients to contact servers
on multiple ports if they offer more than one service. As expected, block scans have higher
rankings, because they span both over multiple ports and multiple hosts.

Attack

horizontal scan

vertical scan

block scan

#ports scanned

1 single port

from 50 to 1,000 distinct hosts

from 50 to 1,000 distinct hosts

#hosts scanned

from 50 to 1,000 distinct ports

1 single host

from 50 to 1,000 distinct ports

In top-K

in top-5

in top-10

in top-25

in top-50

Horizontal scan

94.3%

99.5%

100%

100%

Vertical scan

92.4%

99.1%

99.7%

100%

Block scan

99.2%

99.7%

100%

100%

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

11

Figure 4 reports an example of the traffic time series used to compute the risk score 𝑅, extracted
from the layers Ports, Flows, Conns, Durations. The X-axis represents time, and the Y-axis
reports the value of different metrics. Small arrows highlight significant anomalies: a horizontal
scan around 12:48 and two vertical scans around 17:55 and 22:20.

FIGURE 4. TIME SERIES OF AN INTERNAL HOST PERFORMING HORIZONTAL AND VERTICAL
SCANS

2) Data Transfer to Dropzone Before Exfiltration
Attackers often move data to be exfiltrated towards an internal dropzone [23, 12], used as
intermediate point from which the exfiltration is easier to perform. These activities can be
detected through the risk score 𝐷𝑇𝐷 defined as follows:

A higher value of 𝐷𝑇𝐷 suggests that an internal host is likely transferring data to an internal
dropzone. In the numerator, we consider point anomalies instead of state changes because
the higher bandwidth of internal networks – typically in the order of Gbps – allows for short
transfer times. In the denominator, we consider to rule out legitimate intensified network
activity, such as p2p protocols.

We perform several experiments in which we simulate DTD attacks of increasing transfer sizes
from 10MB-50MB to 100MB-1GB. We use five controlled hosts as possible attackers and we
transfer data to a Web server of the organisation as an emulated dropzone. Table 5 reports the
percentage of times a host performing a DTD is ranked within the top-K: for small amounts

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

12

of data (10-50MB), in about 92% of the cases the hosts are ranked within the top-10. This is
the most challenging scenario for detection, because clients may use multiple hosts or devices
for backup, hence it is difficult to identify anomalous transfers unless we integrate anomaly
detection with white and black lists of internal hosts (where storage is or is not allowed), but
similar integrations are out of the scope of this paper. The most compelling result is that in 99%
of the cases, the 50-100MB internal transfers are ranked within the top-10.

TABLE 5. PERCENTAGE OF TIMES A HOST PERFORMING A DTD IS RANKED WITHIN THE TOP-K

As an example, Figure 5 reports time series that show the evolution of several layers referring
to an internal host used for injecting data transfers to the dropzone. The X-axis represents
time, and the Y-axis reports the different metrics. Two arrows highlight peaks of about 100MB
and 1GB, respectively – corresponding to the injected data exfiltration. We also observe an
increment of the average flow duration in correspondence of the two data transfers, whereas
other statistics (e.g., number of contacted hosts) remain stable.

FIGURE 5. TIME SERIES OF AN INTERNAL HOST IN WHICH TWO DTDS OF 100MB AND 1GB ARE
INJECTED

3) MITM: Man in the Middle Attack
Man in the middle (MITM) attacks are used to perform advanced reconnaissance or to steal
credentials, because an attacker can eavesdrop on communications of hosts within the same

In top-K

in top-5

in top-10

in top-25

in top-50

10-50MB

87.5%

91.7%

95.6%

99.5%

50-100MB

95.4%

99.1%

99.8%

100%

100MB-1GB

99.7%

100%

100%

100%

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

13

subnet. Here, we consider one of the most subtle forms of MITM, performed through ARP
spoofing [34]. In this scenario, an attacker sends fake correspondence between IP and MAC
addresses with the goal of acting as ‘hidden’ proxy between a victim and the gateway of its
subnet. Netflows record no explicit communication between the eavesdropper and the victim,
but our experiments show that once a host becomes a victim of MITM, then all packets sent
and received by the victim pass twice through the switch. This attack can be captured by the
state-change detection algorithm of the analytics core. In order to prioritise possible victims of
MITM we define the following risk score:

In the numerator, we consider state-changes instead of point anomalies because MITM is
usually an activity that lasts for some time to get useful information. The parameter is a
multiplicative factor because if =0 there is no new correspondence in the ARP layer (see
Section 4). In the denominator, we include state-changes and novel edges in Flows and Conns
layers, because they must remain approximately stable with respect to a past window even if
MITM is occurring.

Experimental results are achieved through controlled MITM attacks of varying durations where
we use one host as the eavesdropper and other 10 hosts as victims. Table 6 shows that in more
than 95% of the cases even MITM lasting for just 15-30 minutes are prioritised in the top-10;
if an attack lasts for at least 1 hour, the victim hosts are ranked within the top-5 in more than
98% of the cases.

TABLE 6. PERCENTAGE OF TIMES A HOST VICTIM OF A MITM IS RANKED WITHIN THE TOP-K

As an illustration, in Figure 6 we report the time series of a host related to Packets and Bytes
layers, where the Y-axis denotes the different metrics, and the X-axis reports time. The plots
report two days separated by a vertical dashed line. When the MITM occurs on the second day,
it is possible to observe that the number of packets and bytes increases significantly.

In top-K

in top-5

in top-10

in top-25

in top-50

15-30min

89.8%

95.4%

99.0%

99.7%

1-2hr

98.2%

99.1%

99.8%

100%

12-24hr

99.4%

99.8%

100%

100%

24-72hr

99.8%

100%

100%

100%

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

14

FIGURE 6. COMPARISON SHOWING CHANGES IN PACKETS AND BYTES LAYERS WHEN MITM
OCCURS

4) Watering Hole through DNS Spoofing
‘Watering hole’ is a technique used by attackers to increase their coverage and persistence by
infecting multiple hosts of an organisation simultaneously. We consider a particular type of
watering hole attack performed through DNS spoofing [35], where the attacker spoofs DNS
responses to redirect victims to a compromised sever. To prioritise internal hosts that may
correspond to watering holes, we define the risk score 𝑊𝐻 as follows:

A high value of 𝑊𝐻 represents a higher likelihood that a host is performing a watering hole
through DNS spoofing. Intuitively, this can be prioritised when a host has many new incoming
connections, its IP corresponds to a new DNS resolution, and it has a state-change in the number
and duration of incoming connections. We observe that is a multiplicative factor, because

 =0 implies that no DNS spoofing occurred.

To evaluate the risk score 𝑊𝐻, we use five internal clients as ‘spoofers’ of three internal Web
servers offering different services: Server 1 (small), Server 2 (medium) and Server 3 (large),
which are used by an average number of clients per hour of about 10, 50 and 250, respectively.
We perform a DNS spoofing at different times of the day over several weeks. Table 7 reports
the percentage of times a watering hole host (that was redirecting traffic to itself through DNS
spoofing) has been ranked within the top-K hosts in the different scenarios. This table shows
that for Server 1 (having small activity) the spoofer is prioritised in the top-10 in more than 96%
of the cases, while this percentage is even higher for servers with high number of clients where
the intensity of the redirect is more evident.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

15

TABLE 7. PERCENTAGE OF TIMES A HOST PERFORMING ‘WATERING HOLE’ IS RANKED WITHIN
THE TOP-K

As an example, Figure 7 reports a bipartite graph representation of the Conns layer over
different days: on day 6, the dotted circle highlights a host that started performing a watering
hole attack through DNS spoofing. We can observe an increase in the number of the incoming
communications.

FIGURE 7. BIPARTITE COMMUNICATIONS GRAPH DERIVED FROM CONNS LAYER OVER 7
DIFFERENT DAYS

5) Lateral Movement through Pivoting
To get closer to his target, an attacker tends to compromise several internal hosts with higher
privileges or to access the most internal parts of the corporate network. This activity is called
lateral movement [12]. Figure 8 reports an example through a common technique named
pivoting [36], where an attacker creates a tunnel of communications among multiple hosts
(pivoters) to access a LAN that cannot be reached directly from the outside.

FIGURE 8. EXAMPLE OF LATERAL MOVEMENT THROUGH PIVOTING

In top-K

in top-5

in top-10

in top-25

in top-50

Server 1 (small)

94.7%

96.2%

99.5%

99.8%

Server 2 (medium)

98.9%

99.8%

100%

100%

Server 3 (large)

99.9%

100%

100%

100%

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

16

To prioritise lateral movements, we define the risk score 𝐿𝑀 as follows:

where and take into account new paths in the communications graph (see Section
4), while and check whether an increment in the average duration of the flows
has occurred. (We recall that a pivoting tunnel has to last for some time [36]). We perform
several experiments involving up to 10 controlled clients as intermediate pivoter hosts in the
lateral movement (see Figure 8). Table 8 reports the percentages of times a pivoter host is
ranked within the top-K risky nodes. The different columns correspond to different lengths of
the pivoting tunnel. For example, Figure 8 presents a tunnel of length 2 with two pivoter hosts.

TABLE 8. PERCENTAGE OF TIMES A HOST PERFORMING LM IS RANKED WITHIN THE TOP-K

C. Autonomous Triage to Support Security Analysts
We present how results can be combined to produce an overall ranking, useful for security
analysts to focus on few suspicious hosts.

FIGURE 9. ONLINE AUTONOMOUS TRIAGE OF INTERNAL HOSTS FOR DIFFERENT ATTACK
SCENARIOS

Figure 9 reports the overall rankings, with each line corresponding to a different attack: R
for reconnaissance, DTD for data transfer to dropzone, MITM for man in the middle, WH

In top-K

in top-5

in top-10

in top-25

in top-50

1 pivoter

96.2%

97.9%

99.1%

99.8%

3-5 pivoters

99.7%

99.9%

100%

100%

8-10 pivoters

99.9%

100%

100%

100%

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

17

for watering hole through DNS spoofing, and LM for lateral movement through pivoting. On
the leftmost or rightmost side is the host with higher or lower risk score, respectively, on that
line. All hosts are represented as rectangles whose size is proportional to the number of top-K
rankings in which a host appears. For example, host h202 appears in two top-five rankings (first
for WH, and third for LM), hence its rectangle has a double size. As ranking operations are
evaluated online, rectangles with a dashed outline denote hosts that recently entered a top-five
ranking. A similar visualisation supports security analysts in monitoring several cyber threats
occurring in the core of large networks. The number of top-K hosts to show can be adapted,
depending on the size of the organisation and the amount of human resources. As a final remark,
it is important to observe that our proposal makes it hard for an attacker to evade ranking,
because we monitor changes in activity of each individual host with respect to its history, and
we produce an overall ranking considering all hosts of the internal network. Hence, an attacker
would require a complete view of all hosts’ behaviours and history to evade prioritisation
successfully.

6. COnCluSIOnS

In this paper, we propose a novel approach based on ranking and prioritisation instead of
‘guaranteed’ detection. We consider an innovative perspective in which we start by analysing
individual host behaviours, and then post-correlate outputs to compute various indicators
corresponding to different attacker activities. A prioritised list of likely compromised hosts is
passed to human analysts, who can focus their attention only on the most suspicious hosts and
activities. Experimental evaluations and use-case examples in real-world internal networks of
more than 1,000 hosts demonstrate the feasibility and scalability of the proposed approach for
online autonomous triage of different attack scenarios. Future works include the integration of
attack indicators from external traffic, such as text analysis and statistical characterisation of
DNS queries to identify possible C&Cs.

reFerenCeS

[1] V. Chandola, A. Banerjee and V. Kumar, ‘Anomaly detection: A survey,’ ACM Computing Surveys (CSUR),
2009.

[2] E.S. Pilli, R.C. Joshi and R. Niyogi, ‘Network forensic frameworks: Survey and research challenges,’
Elsevier Digital Investigation, 2010.

[3] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels and E. Kirda, ‘Beehive: Large-
scale log analysis for detecting suspicious activity in enterprise networks,’ in Proceedings of the 29th ACM
Annual Computer Security Applications Conference, 2013.

[4] M. Andreolini, M. Colajanni and M. Marchetti, ‘A collaborative framework for intrusion detection in
mobile networks,’ Elsevier Information Sciences, 2015.

[5] W. Wang and T. E. Daniels, ‘A graph based approach toward network forensics analysis,’ ACM
Transactions on Information and System Security (TISSEC), 2008.

[6] S. J. Stolfo, ‘Worm and attack early warning: piercing stealthy reconnaissance,’ IEEE Security & Privacy,
2004.

[7] M. P. Collins and M. K. Reiter, ‘Hit-list worm detection and bot identification in large networks using
protocol graphs,’ in International Workshop on Recent Advances in Intrusion Detection, 2007.

[8] M. Bailey, E. Cooke, F. Jahanian, Y. Xu and M. Karir, ‘A survey of botnet and botnet detection,’ in
Conference for Homeland Security, CATCH ‘09, Cybersecurity Applications & Technology, 2009.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

18

[9] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda and C. Kruegel, ‘Disclosure: detecting botnet command
and control servers through large-scale netflow analysis,’ in Proceedings of the ACM 28th Annual
Computer Security Applications Conference, 2012.

[10] G. Gu, P.A. Porras, V. Yegneswaran, M.W. Fong and W. Lee, ‘BotHunter: Detecting Malware Infection
Through IDS-Driven Dialog Correlation,’ in Usenix Security, 2007.

[11] G. Gu, R. Perdisci, J. Zhang and W. Lee, ‘BotMiner: Clustering Analysis of Network Traffic for Protocol-
and Structure-Independent Botnet Detection,’ in Usenix Security Symposium, 2008.

[12] R. Brewer, ‘Advanced persistent threats: minimising the damage,’ Network Security, pp. 5-9, 2014.
[13] M. Colajanni, D. Gozzi and M. Marchetti, ‘Enhancing interoperability and stateful analysis of cooperative

network intrusion detection systems,’ in Proceedings of the 3rd ACM/IEEE Symposium on Architecture for
networking and communications systems, 2007.

[14] M. Marchetti, M. Colajanni and F. Manganiello, ‘Framework and Models for Multistep Attack Detection,’
International Journal on Security and Its Applications, 2011.

[15] K. Ruan, J. Carthy and T. Kechadi, ‘Survey on cloud forensics and critical criteria for cloud forensic
capability: A preliminary analysis,’ in Proceedings of the Conference on Digital Forensics, Security and
Law, 2011.

[16] J. Grover, ‘Android forensics: Automated data collection and reporting from a mobile device,’ Elsevier
Digital Investigation, 2013.

[17] P. Bhatt, E. Toshiro Yano and P. M. Gustavsson, ‘Towards a Framework to Detect Multi-stage Advanced
Persistent Threats Attacks,’ in IEEE International Symposium on Service Oriented System Engineering
(SOSE), 2014.

[18] E. M. Hutchins, M. J. Cloppert and R. M. Amin, ‘Intelligence-driven computer network defense informed
by analysis of adversary campaigns and intrusion kill chains,’ in Proceedings of the 6th International
Conference on i-Warfare and Security, 2011.

[19] R. Brewer, ‘Advanced persistent threats: minimising the damage,’ Network Security, pp. 5-9, 2014.
[20] I. Jeun, Y. Lee and D. Won, ‘A practical study on advanced persistent threats,’ Computer Applications for

Security, Control and System Engineering, pp. 144-152, 2012.
[21] N. Virvilis and D. Gritzalis, ‘The big four – what we did wrong in advanced persistent threat detection?’ in

IEEE International Conference on Availability, Reliability and Security (ARES), 2013.
[22] M. Marchetti, F. Pierazzi, A. Guido and M. Colajanni, ‘Countering Advanced Persistent Threats through

security intelligence and big data analytics,’ in Cyber Power, 2016 8th International Conference on Cyber
Conflict, Tallinn, Estonia, 2016.

[23] M. Marchetti, F. Pierazzi, M. Colajanni and A. Guido, ‘Analysis of high volumes of network traffic for
Advanced Persistent Threat detection,’ Elsevier Computer Networks, 2016.

[24] J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti and M. Christensen, ‘Portvis: a tool for port-based
detection of security events,’ in Proceedings of the 2004 ACM workshop on Visualization and data mining
for computer security, 2004.

[25] V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe and H. Zhang, ‘LADS: Large-scale
Automated DDoS Detection System,’ in Usenix Annual Technical Conference, General Track, 2006.

[26] M. H. Bhuyan, D. Bhattacharyya and J. K. Kalita, ‘Surveying port scans and their detection
methodologies,’ The Computer Journal, 2011.

[27] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip
and D. Zerkle, ‘GrIDS-a graph based intrusion detection system for large networks,’ in Proceedings of the
19th National Information Systems Security Conference, 1996.

[28] S. Casolari, S. Tosi and F. Lo Presti, ‘An adaptive model for online detection of relevant state changes in
Internet-based systems,’ Performance Evaluation, pp. 206-226, 2012.

[29] F. Pierazzi, S. Casolari, M. Colajanni and M. Marchetti, ‘Exploratory security analytics for anomaly
detection,’ Computers & Security, pp. 28-49, 2016.

[30] ‘nProbe,’ [Online]. Available at: http://www.ntop.org/products/netflow/nprobe/.
[31] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras and B. Stiller, ‘An overview of IP flow-based

intrusion detection,’ IEEE communications surveys & tutorials, 2010.
[32] P. Goyal, S. Batra and A. Singh, ‘A literature review of security attack in mobile ad-hoc networks,’

International Journal of Computer Applications, 2010.
[33] M. Newman, Networks: An introduction, Oxford University Press, 2010.
[34] V. Ramachandran and S. Nandi, ‘Detecting ARP spoofing: An active technique,’ in International

Conference on Information Systems Security, 2005.
[35] U. Steinhoff, A. Wiesmaier and R. Araujo, ‘The State of the Art in DNS Spoofing,’ in Proc. 4th Intl. Conf.

Applied Cryptography and Network Security (ACNS), 2006.
[36] Offensive-Security.com, ‘Pivoting,’ 2016. [Online]. Available: https://offensive-security.com/metasploit-

unleashed/pivoting/.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore. Restrictions apply.

