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Scalable Architecture for 
Online Prioritisation of 
Cyber Threats

Abstract: Detecting advanced attacks is increasingly complex and no single solution can 
work. Defenders can leverage logs and alarms produced by network and security devices, but 
big data analytics solutions are necessary to transform huge volumes of raw data into useful 
information. Existing anomaly detection frameworks either work offline or aim to mark a 
host as compromised, with high risk of false alarms. We propose a novel online approach that 
monitors the behaviour of each internal host, detects suspicious activities possibly related to 
advanced attacks, and correlates these anomaly indicators to produce a list of the most likely 
compromised hosts. Due to the huge number of devices and traffic logs, we make scalability 
one of our top priorities. Therefore, most computations are independent of the number of hosts 
and can be naively parallelised. A large set of experiments demonstrates that our proposal can 
pave the way to novel forms of detection of advanced malware.
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1. InTrOduCTIOn

The information systems of modern organisations are subject to a multitude of cyber attacks 
conceived by a wide range of attackers with different goals, capabilities and motivations. 
Despite all the efforts spent on preventive defences, the reality is that attacks occur every day 
and no organisation can consider itself secure. This paper shifts the focus from the prevention 
to the detection phase. 

Existing proposals in academic literature detect specific attacks through heuristics and statistical 
analysis (e.g., [1, 2, 3, 4]). Most approaches (e.g., [2, 5]) rely on offline post-event analysis. 
Other online anomaly detectors assume that statistically detectable changes involve huge 
numbers of hosts (e.g., worm propagation in [6, 7]) or that compromised hosts share similar 
behaviours (e.g., botnet detection in [8, 9, 10, 11]). However, these assumptions are no longer 
true in modern human-driven advanced cyber attacks [12], hence existing proposals can be 
affected by many false positive and false negative alarms. 

As no security operator wants to be annoyed by hundreds of alarms notified at the same priority 
level, we take a different direction and focus on ranking suspicious hosts instead of detecting 
compromised hosts. To this end, our online analysis begins by monitoring the behaviour of 
individual hosts over time and by identifying suspicious events involving even single or few 
hosts. These indicators are aggregated to produce a ranking of the most suspicious hosts, which 
are then provided to the security operator in a timely fashion.

Due to the massive amount of data to be managed online, we propose a scalable design and 
implementation of our approach. All initial phases before the final aggregation scale linearly 
with the number of hosts and can be parallelised. The proposed approach is general enough to 
be adopted with different types of data, including internal traffic, external traffic, alarms coming 
from IDS and SIEM, yet the goal of this paper is not to present a complete framework, but 
rather to propose the idea that the combination of autonomous triage with manual inspection 
increases the probability of detecting even advanced attacks. For these reasons, we present 
our approach relying only on network flows of internal corporate traffic, whose effectiveness 
is shown through experiments applied to networks of more than 1,000 hosts. We consider five 
main attack scenarios, representative of the activities that an attacker will likely perform from 
a compromised internal host: reconnaissance; data transfer to a dropzone; man in the middle; 
watering hole through DNS spoofing; and lateral movement through pivoting. 

Section 2 of this paper presents related work. Section 3 outlines the main components and 
functions of the proposed approach. Section 4 describes the analytics core that extracts useful 
information and builds layer models from raw network data. Section 5 presents five examples 
of prioritisation algorithms that leverage outputs produced by the analytics core, along with 
results from real testbed networks. Section 6 concludes the paper with some final remarks and 
suggestions for future work.
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2. relATed WOrk

Detecting advanced cyberattacks is increasingly difficult, as attackers have several ways 
to penetrate a network and hide their activities. The huge volume of logs generated by the 
multitude of servers, firewalls and devices are useful only when integrated with security 
analytics systems for automatic detection and triage. Considering the attacker’s ability and the 
difficulty of signalling an infected host without causing false alarms, in the area of security 
analytics we propose an innovative approach. Instead of signalling an impossible ‘guaranteed’ 
detection, our system ranks the most suspicious hosts and leaves to the security analyst the 
task of inspecting a manageable number. Additional features include online processing for 
early prioritisation and scalability over thousands of hosts, as most analyses can be carried out 
independently for each host. The proposed approach can be applied on alerts and logs derived 
by IDS [13, 14], SIEM and other security appliances, and can be integrated with external traffic 
analyses; but in this paper we present a brand-agnostic approach based exclusively on flows of 
internal network traffic. 

We identify three main areas of related works: offline forensics analysis, advanced malware 
detection, and online traffic monitoring. 

The large majority of related proposals in the literature concern offline analysis for forensics 
purposes that differ from our online approach. Just to give some representative examples, 
we can cite [2] on heterogeneous logs analyses, [5] for its original graph-based approach for 
forensics, BeeHive [3], which correlates logs through histogram analysis to identify suspicious 
activities and corporate policy violations, [15] on forensics for cloud environments, and [16] on 
mobile forensics. Literature on advanced malware detection focuses on specific attack sequence 
patterns based on past APT campaigns [17, 18, 19, 20, 21], instead of detecting suspicious 
activities in each possible phase of an attack. Other more general solutions [17, 18] share our 
idea of prioritising suspicious hosts, but they are designed for offline or batch analysis. 

The proposals based on online analyses focus on detection of DDoS [24, 25, 26], worm 
propagation and botnets, and these last two are the most related to our work. In worm propagation 
detection [7, 27], the internal network is usually modelled as a graph, where huge changes in 
the overall structure are identified as possible infection propagations. These works differ from 
our proposal because they focus on a specific threat, and their analyses look for huge changes 
in traffic volumes and patterns, whereas we prioritise signals of malicious activities related to 
behavioural changes of individual hosts. Our solution is scalable with respect to the number of 
monitored hosts, while worm propagation analysis depends on the size of the network graph. 
Botnet detection proposals [8, 9, 10, 11] are based on online scalable solutions for finding hosts 
that are possibly compromised. However, their underlying assumption is that a large number 
of hosts are compromised and share similar network behaviour, which is not true in the case of 
advanced cyberattacks where only a few hosts may be compromised and malicious actions are 
often human-driven. 
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In summary, we can outline the major contributions that differentiate our work with respect to 
the state of the art:

• ranking of suspicious activities instead of specific detection(s);
• online analysis instead of offline post-mortem analysis;
• analysis based on individual host behaviour that guarantees parallel analyses and 

scalability; and
• the possibility of capturing suspicious actions involving even a few hosts.

3. FrAmeWOrk OvervIeW

We aim to detect anomalous network activities concerning each host of a corporation, and to 
use this information to rank the most suspicious hosts. In this section, we outline the proposed 
architecture and design choices for achieving scalability. Figure 1 emphasises that the input 
is represented by raw network data gathered by internal probes. Without loss of generality, in 
this paper we only consider network flows of traffic among internal hosts, which are feasible 
to collect and analyse for online contexts [28]. These logs are processed through three main 
steps: analytics core, attack prioritisation and autonomous triage. The final output is a list of 
internal hosts ranked by a risk score representing the likelihood that each host is involved in 
one or more attacks. 

FIGURE1. FRAMEWORK OVERVIEW

Starting from raw network data, the analytics core builds different layers, which are graph 
models whose nodes represent internal hosts and edges represent a metric of interest. Each layer 
portrays a different perspective of the events occurring in the monitored network. For example, 
if we consider three layers, then edges may represent the number of packets, the number of 
bytes, and the average duration of the transmissions between two hosts, respectively. Then, the 
analytics core applies anomaly detection algorithms to the activities of each internal host within 
each layer. This fine-grained analysis is motivated by the observation that an attack related to a 
single host within a large internal network causes very small alterations that are not visible in 
an aggregated model comprising all layers and all hosts. Similar ‘global’ approaches work well 
only to identify massive attacks or network-wide anomalies [29, 4]. 

As a further advantage, since anomaly detection in different layers and hosts can be performed 
in parallel, the analytics core scales linearly with respect to the number of monitored hosts and 
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layers. In this way, we can extend and improve an instance of the framework by adding more 
layers and nodes without having to change the information flow and the overall architecture. 
The algorithms adopted by the analytics core for layers modelling and anomaly detection are 
presented in Section 4.

The attack prioritisation module takes as its input the anomalies identified by the analytics core, 
and correlates them with the goal of detecting different attack scenarios, each one corresponding 
to activities that an attacker may perform from a compromised internal host. It is also possible 
to include novel attack detection algorithms with limited computational effort, because they can 
leverage the common fine-grained analyses already performed by the analytics core. The details 
of the attack prioritisation algorithms are discussed in Section 5.

The output of the attack prioritisation module is a risk score assigned to each internal host 
for each considered attack. Attack-specific risk scores for all hosts represent the input of the 
autonomous triage module which aids security operators by visualising the few hosts with 
higher ranks and the attacks in which they are likely involved.

4. AnAlyTICS COre

This section describes the algorithms used by the analytics core for layers modelling and for 
anomaly detection within each layer. The objective is to identify statistical anomalies for each 
host in all the layers, which will be correlated and ranked by the attack prioritisation module. 
The analytics core is designed for online processing and scalability.

A. Layers Modelling
Raw data is collected from the probes as soon as it is produced, and temporarily stored for 
a time defined by the current time window of size Δ. If 𝑡 denotes the current time, then the 
layers modelling module maintains all raw data generated between 𝑡 −Δ and 𝑡 . Since previous 
research shows that most network activities are characterised by a daily periodicity [29, 23], it 
is convenient to set Δ equal to one day. At every sampling interval 𝜏, all raw data in the current 
time window is used to compute the current representation of all layers. Since anomalies can be 
detected only after their appearance in the current representation of a layer, ‘early’ prioritisation 
is influenced by the choice of the parameter 𝜏 that is conveniently chosen in the order of a few 
minutes. Lower values cause useless oversampling of data (as an example, Netflow records  
related to long-lived connections are refreshed every 2 minutes [30]), while higher values 
introduce detection delays. We use the notation 𝐿𝑖(𝑡 ) to identify the current representation of 
the layer 𝑖, built using raw data in the current time window. 

As shown in Figure 2, each 𝐿𝑖(𝑡 )  is modelled as a graph whose nodes represent hosts of the 
internal network, and edges denote some specific features of network activities occurring 
between the two hosts. As an example, a layer representing the number of bytes exchanged 
between internal hosts can be defined as a directed and weighted graph, in which edge direction 
denotes the direction of data transfer (from source to destination) and the weight represents the 
amount of transferred bytes. 
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FIGURE 2. ACTIVITIES OF THE LAYER MODELLING MODULE

Table 1 reports the list of considered layers and their descriptions. These characteristics are 
commonly adopted to identify anomalies in traffic [31]. For example, time series of flows, 
packets, bytes and ports are used to identify reconnaissance activities [6] and data exfiltration 
[23]; graphs of internal communications are adopted for identification of worm propagation [7]; 
ARP messages can be useful for detecting eavesdropping activities [32].

TABLE 1. CONSIDERED LAYERS

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes 
that exchange packets using any protocol. Direction is from source to target, and 
the weight of the edge is the total number of packets transmitted.

Packets

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes 
that exchange packets using any protocol. Direction is from source to target, and 
the weight of the edge is the total number of bytes transmitted.

Bytes

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes 
that exchange packets using any protocol. Direction is from source to target, and 
the weight of the edge is the total number of network flows.

Flows

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes 
communicating through TCP or UDP protocols. Direction is from source to target, 
and the weight of the edge is the number of different destination port numbers.

Ports

Directed weighted graph. Nodes are internal hosts and edges connect 2 nodes 
that exchange packets using any protocol. Direction is from source to target, and 
the weight of the edge is the average duration of network flows.

Durations

Directed unweighted graph. Nodes are internal 
hosts and edges connect 2 nodes that exchange 
IP datagrams. Direction is from source to target.

Conns

Bipartite directed graph. Both sets of nodes represent internal hosts. Edges 
connect each host from the first set to the hosts of the second set reachable 
by it through a ‘path’ composed of at least 3 hosts.

Paths

Bipartite directed graph. One set of nodes represents hostnames of internal hosts, 
the other set of nodes represents IP addresses. Edges connect a hostname to the 
associated IP address in DNS resolutions.

DNS

Bipartite directed graph. One set of nodes represents IP addresses of internal 
hosts, the other set of nodes represents MAC addresses. Edges connect the IP 
address and the MAC address that are bound as part of an ARP transaction.

ARP

Layer Description
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The representations of all layers are passed as input to the processing modules that perform 
anomaly detection. 

B. Layer Anomaly Detection 
The goal is to identify hosts that exhibit anomalous behaviours in any of the layers. This step 
does not depend on identifiable attacks nor on the feature represented by each layer, hence 
all layers are subject to the same anomaly detection algorithms, which can be executed in 
parallel and independently. For each layer, we adopt two complementary detection approaches, 
as shown in Figure 3: the former identifies quantitative anomalies and state changes; the latter 
detects novel or uncommon events. 

FIGURE 3. STRUCTURE OF A LAYER ANOMALY DETECTION MODULE

The former approach processes all current layer representations 𝐿𝑖(𝑡 ) . The goal is to extract 
scalar values from graphs and to build time series. For each host, the framework computes two 
scalar values: the weighted in-degree and the weighted out-degree [33] representing the number 
of incoming and outgoing connections of each host in the current layer, respectively. Since a 
new 𝐿𝑖(𝑡 )  is received by the layer anomaly detection module (one at every sampling interval 𝜏), 
scalar values for consecutive 𝐿𝑖(𝑡 )  are used to build two current time series representing recent 
values of in-degree and out-degree for each host. If 𝑡  denotes the current instant of time, the 
current time series includes values between 𝑡 −Δ and 𝑡 . Moreover, to perform anomaly detection, 
it is necessary to build two historical time series including older scalar values between 𝑡 −𝑊 
and 𝑡 −Δ (excluded), where 𝑊 represents the size of the historical window. 𝑊 should be large 
enough (in the order of few weeks) to have a reliable baseline for the past behaviour of each 
host [28]. We observe that traffic among internal hosts exhibits more stability with respect to 
traffic among internal and external hosts, characterised by higher variability and consequent 
difficulties to achieve stable baseline models [29]. Anomaly detection is performed on each 
current time series through the online and adaptive detection algorithm proposed in [28] trained 
over the period 𝑊. This algorithm identifies both point anomalies and state changes [1] that 
reflect different kinds of relevant deviations between the current and past behaviours of an 
internal host. 
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The latter approach (cf. Figure 3) identifies new edges that never appeared in the historical 
window. For example, these edges may represent novel persistent connections of an attacker 
trying to perform lateral movement activities. For each 𝐿𝑖(𝑡 ) , the detection algorithm computes 
its current adjacency matrix [33], which is a mathematical representation of the edges in 𝐿𝑖(𝑡 ) , 
whose rows and columns represent the internal hosts: the matrix element (𝑗, 𝑘)  is set to 1 if 𝐿𝑖(𝑡 ) 
has an edge from host 𝑗 to k; to 0 otherwise. 

Older versions of the current adjacency matrix, built on previous 𝐿𝑖(𝑡 )  belonging to the 
historical time window 𝑊, are used to compute the historical adjacency matrix. Its values are 
rational numbers between 0 and 1. In particular, (𝑗, 𝑘)  denotes the frequency of occurrence of 
the edge from 𝑗 to 𝑘 in the older instances of 𝐿𝑖(𝑡 ) . For example, the value (𝑗, 𝑘)  is set to 1 if 
all older instances of 𝐿𝑖(𝑡 )  layer contain an edge from j to k; if one-fifth of older 𝐿𝑖(𝑡 )  layers 
include an edge from j to k, then the value (𝑗, 𝑘)  is set to 0.2. The historical time window is 
updated every Δ.

At every sampling interval 𝜏, the detection algorithm subtracts the historical adjacency matrix 
to the current adjacency matrix. The result, defined as novelty matrix, allows an immediate 
identification of new or uncommon edges that are present in 𝐿𝑖(𝑡 ) , but never or seldom appeared 
in the historical time window. Uncommon edges having a low value in the historical adjacency 
matrix will result in values that are close to 1 in the novelty matrix; common edges with high 
values in the historical adjacency matrix will result in values close to 0 in the novelty matrix. 
The layer anomaly detection algorithm can sum the values included in each row of the novelty 
matrix to evaluate the ‘novelty’ of all the edges starting from the corresponding host. Similarly, 
the ‘novelty’ of all edges that end in any internal host is computed by summing the values on 
the corresponding column of the novelty matrix. 

Anomalies, state-changes and novel edges detected by the analytics core are then used by the 
algorithms which evidence malicious activities and prioritise them. 

5. ATTACk PrIOrITISATIOn And rAnkIng

The main goal is to prioritise signals of malicious activities that may be part of an advanced 
attack. To this purpose, we correlate the anomalies, state-changes and novel edges detected by 
the analytics core.

A. Experimental Testbed
There are several possible indicators associated with malicious activities. In this paper, we 
consider: reconnaissance (R); data transfer to a dropzone (DTD); man in the middle (MITM); 
watering hole through DNS spoofing (WH); and lateral movement through pivoting (LM). 
Table 2 indicates which layer models are included in the analysis of each attack scenario. The 
presence of multiple layers increases confidence that a suspicious activity is actually occurring. 
The attack prioritisation module evaluates a risk score for each internal host by combining 
the anomalies, state-changes and novel edges detected by the analytics core. We refer to the 
following notations:
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• 𝑨𝑳𝒊
𝒊𝒏 (resp. 𝑨𝑳𝒊

𝒐𝒖𝒕 ) denotes the intensity of the biggest point anomaly in the incoming 
(resp. outgoing) time series related to layer 𝐿𝑖 of an internal host during the observed 
window [3]. For example, a burst in the outgoing bytes.

• 𝑪𝑳𝒊
𝒊𝒏 (resp. 𝑪𝑳𝒊

𝒐𝒖𝒕 ) denotes the intensity of possible state-changes in the incoming 
(resp. outgoing) time series related to layer 𝐿𝑖 of an internal host. For example, a 
state-change is detected if the average number of packets in the current window 
doubles for an extended period (hence, it is not only a point anomaly [4]). 

• 𝑵𝑳𝒊
𝒊𝒏 NLiin (resp. 𝑵𝑳𝒊

𝒐𝒖𝒕 ) denotes the number of new incoming (resp. outgoing) edges 
of an internal host in the graph of layer 𝐿𝑖. For example, it can be used to detect the 
number of newly contacted hosts in the current time window. 

All formulas and scores in this section are computed for each host.

TABLE 2. LAYERS USED TO PRIORITISE DIFFERENT TYPES OF ATTACKER ACTIVITIES

In the experiments, we consider an internal network consisting of more than 1,000 hosts 
composed of about 800 clients and 200 servers. The client machines have heterogeneous 
operating systems including several versions of Mac OS, Linux and Windows. The server 
machines host mainly websites and DBMS, but also high performance computations, code 
versioning and NAS storage. We place monitoring probes in the main 1Gbit switches of the 
network. Our algorithms are executed on a cluster of eight blades, each having an Intel Xeon 
2.6GHz CPU and 16GB of RAM. Network flows are sampled every five minutes. 

To evaluate scalability, we consider three scenarios consisting of 96, 287 and 1,012 hosts, 
respectively. One cluster node is sufficient for computations related to 96 and 287 hosts, while 
four nodes are necessary for the scenario with 1,012 hosts. This scalability is achieved because 
all computations of the analytics core are performed independently for each host and for each 
layer. Operations of the attack prioritisation module do not scale linearly, but their computational 
cost is negligible with respect to the anomaly detection algorithms of the analytics core. We 
present the details of the prioritisation of the five attack scenarios, and how risk scores are 
shown to the security operators.

B. Prioritisation of Suspicious Activities
For each scenario, we inject multiple attacks in some hosts of the network, we apply our 
analytics and evaluate a risk score for each host.

Attack

Reconnaissance

Data transfer

MITM 

Watering hole

Lateral movement

ARP

X

DNS

X

Paths

X

Conns

X

X

X

X

Durations

X

X

X

X

Ports

X

Flows

X

X

Bytes

X

X

Packets

X

X
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1) Reconnaissance in Internal Network
An attacker having control of an internal host likely scans neighbour hosts looking for (known 
or zero-day) vulnerabilities [6, 26]. We define the risk score 𝑅 for reconnaissance as follows: 

A higher value of 𝑅 denotes a higher likelihood that an internal host is performing a scan. 
Intuitively, when an internal host performs a reconnaissance activity, the average duration of 
its connections decreases (due to many volatile communications) while the numbers of flows, 
ports and contacted hosts increase. To evaluate the risk score for this attack, we carry out 
reconnaissance activities from 10 hosts by varying the scan intensity in terms of number of 
scanned hosts and ports, as described in Table 3.

TABLE 3. RECONNAISSANCE ATTACKS INJECTED IN THE INTERNAL NETWORK FROM 10 HOSTS

Since our approach focuses on prioritisation, we evaluate how many times an internal host 
performing the attack is ranked within the top-K hosts. Table 4 reports the results of multiple 
experiments executed over several weeks, where each row represents the percentage of times an 
internal host performing the attack has been ranked within the top-K. Each column corresponds 
to horizontal, vertical, or block scan experiments as described in Table 3. 

TABLE 4. PERCENTAGE OF TIMES A HOST PERFORMING A RECONNAISSANCE IS RANKED WITHIN 
THE TOP-K

Table 4 shows that in more than 99% of the cases a host performing a reconnaissance activity is 
ranked within the top-10. Horizontal scans are easier to detect because they span over multiple 
hosts, whereas vertical scans are harder because it is more common for clients to contact servers 
on multiple ports if they offer more than one service. As expected, block scans have higher 
rankings, because they span both over multiple ports and multiple hosts. 

Attack

horizontal scan

vertical scan

block scan

#ports scanned

1 single port

from 50 to 1,000 distinct hosts

from 50 to 1,000 distinct hosts

#hosts scanned

from 50 to 1,000 distinct ports

1 single host

from 50 to 1,000 distinct ports

In top-K

in top-5

in top-10

in top-25

in top-50

Horizontal scan

94.3%

99.5%

100%

100%

Vertical scan

92.4%

99.1%

99.7%

100%

Block scan

99.2%

99.7%

100%

100%
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Figure 4 reports an example of the traffic time series used to compute the risk score 𝑅, extracted 
from the layers Ports, Flows, Conns, Durations. The X-axis represents time, and the Y-axis 
reports the value of different metrics. Small arrows highlight significant anomalies: a horizontal 
scan around 12:48 and two vertical scans around 17:55 and 22:20.
   
FIGURE 4. TIME SERIES OF AN INTERNAL HOST PERFORMING HORIZONTAL AND VERTICAL 
SCANS

2) Data Transfer to Dropzone Before Exfiltration 
Attackers often move data to be exfiltrated towards an internal dropzone [23, 12], used as 
intermediate point from which the exfiltration is easier to perform. These activities can be 
detected through the risk score 𝐷𝑇𝐷 defined as follows: 

A higher value of 𝐷𝑇𝐷 suggests that an internal host is likely transferring data to an internal 
dropzone. In the numerator, we consider point anomalies instead of state changes because 
the higher bandwidth of internal networks – typically in the order of Gbps – allows for short 
transfer times. In the denominator, we consider  to rule out legitimate intensified network 
activity, such as p2p protocols. 

We perform several experiments in which we simulate DTD attacks of increasing transfer sizes 
from 10MB-50MB to 100MB-1GB. We use five controlled hosts as possible attackers and we 
transfer data to a Web server of the organisation as an emulated dropzone. Table 5 reports the 
percentage of times a host performing a DTD is ranked within the top-K: for small amounts 
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of data (10-50MB), in about 92% of the cases the hosts are ranked within the top-10. This is 
the most challenging scenario for detection, because clients may use multiple hosts or devices 
for backup, hence it is difficult to identify anomalous transfers unless we integrate anomaly 
detection with white and black lists of internal hosts (where storage is or is not allowed), but 
similar integrations are out of the scope of this paper. The most compelling result is that in 99% 
of the cases, the 50-100MB internal transfers are ranked within the top-10. 

TABLE 5. PERCENTAGE OF TIMES A HOST PERFORMING A DTD IS RANKED WITHIN THE TOP-K
 

As an example, Figure 5 reports time series that show the evolution of several layers referring 
to an internal host used for injecting data transfers to the dropzone. The X-axis represents 
time, and the Y-axis reports the different metrics. Two arrows highlight peaks of about 100MB 
and 1GB, respectively – corresponding to the injected data exfiltration. We also observe an 
increment of the average flow duration in correspondence of the two data transfers, whereas 
other statistics (e.g., number of contacted hosts) remain stable. 
  
FIGURE 5. TIME SERIES OF AN INTERNAL HOST IN WHICH TWO DTDS OF 100MB AND 1GB ARE 
INJECTED

3) MITM: Man in the Middle Attack
Man in the middle (MITM) attacks are used to perform advanced reconnaissance or to steal 
credentials, because an attacker can eavesdrop on communications of hosts within the same 

In top-K

in top-5

in top-10

in top-25

in top-50

10-50MB

87.5%

91.7%

95.6%

99.5%

50-100MB

95.4%

99.1%

99.8%

100%

100MB-1GB

99.7%

100%

100%

100%
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subnet. Here, we consider one of the most subtle forms of MITM, performed through ARP 
spoofing [34]. In this scenario, an attacker sends fake correspondence between IP and MAC 
addresses with the goal of acting as ‘hidden’ proxy between a victim and the gateway of its 
subnet. Netflows record no explicit communication between the eavesdropper and the victim, 
but our experiments show that once a host becomes a victim of MITM, then all packets sent 
and received by the victim pass twice through the switch. This attack can be captured by the 
state-change detection algorithm of the analytics core. In order to prioritise possible victims of 
MITM we define the following risk score:

In the numerator, we consider state-changes instead of point anomalies because MITM is 
usually an activity that lasts for some time to get useful information. The parameter  is a 
multiplicative factor because if  =0 there is no new correspondence in the ARP layer (see 
Section 4). In the denominator, we include state-changes and novel edges in Flows and Conns 
layers, because they must remain approximately stable with respect to a past window even if 
MITM is occurring.

Experimental results are achieved through controlled MITM attacks of varying durations where 
we use one host as the eavesdropper and other 10 hosts as victims. Table 6 shows that in more 
than 95% of the cases even MITM lasting for just 15-30 minutes are prioritised in the top-10; 
if an attack lasts for at least 1 hour, the victim hosts are ranked within the top-5 in more than 
98% of the cases. 

TABLE 6. PERCENTAGE OF TIMES A HOST VICTIM OF A MITM IS RANKED WITHIN THE TOP-K

As an illustration, in Figure 6 we report the time series of a host related to Packets and Bytes 
layers, where the Y-axis denotes the different metrics, and the X-axis reports time. The plots 
report two days separated by a vertical dashed line. When the MITM occurs on the second day, 
it is possible to observe that the number of packets and bytes increases significantly. 
  

In top-K

in top-5

in top-10

in top-25

in top-50

15-30min

89.8%

95.4%

99.0%

99.7%

1-2hr

98.2%

99.1%

99.8%

100%

12-24hr

99.4%

99.8%

100%

100%

24-72hr

99.8%

100%

100%

100%
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FIGURE 6. COMPARISON SHOWING CHANGES IN PACKETS AND BYTES LAYERS WHEN MITM 
OCCURS

4) Watering Hole through DNS Spoofing
‘Watering hole’ is a technique used by attackers to increase their coverage and persistence by 
infecting multiple hosts of an organisation simultaneously. We consider a particular type of 
watering hole attack performed through DNS spoofing [35], where the attacker spoofs DNS 
responses to redirect victims to a compromised sever. To prioritise internal hosts that may 
correspond to watering holes, we define the risk score 𝑊𝐻 as follows:

A high value of 𝑊𝐻 represents a higher likelihood that a host is performing a watering hole 
through DNS spoofing. Intuitively, this can be prioritised when a host has many new incoming 
connections, its IP corresponds to a new DNS resolution, and it has a state-change in the number 
and duration of incoming connections. We observe that  is a multiplicative factor, because 

 =0 implies that no DNS spoofing occurred. 

To evaluate the risk score 𝑊𝐻, we use five internal clients as ‘spoofers’ of three internal Web 
servers offering different services: Server 1 (small), Server 2 (medium) and Server 3 (large), 
which are used by an average number of clients per hour of about 10, 50 and 250, respectively. 
We perform a DNS spoofing at different times of the day over several weeks. Table 7 reports 
the percentage of times a watering hole host (that was redirecting traffic to itself through DNS 
spoofing) has been ranked within the top-K hosts in the different scenarios. This table shows 
that for Server 1 (having small activity) the spoofer is prioritised in the top-10 in more than 96% 
of the cases, while this percentage is even higher for servers with high number of clients where 
the intensity of the redirect is more evident.
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TABLE 7. PERCENTAGE OF TIMES A HOST PERFORMING ‘WATERING HOLE’ IS RANKED WITHIN 
THE TOP-K

As an example, Figure 7 reports a bipartite graph representation of the Conns layer over 
different days: on day 6, the dotted circle highlights a host that started performing a watering 
hole attack through DNS spoofing. We can observe an increase in the number of the incoming 
communications. 
 
FIGURE 7. BIPARTITE COMMUNICATIONS GRAPH DERIVED FROM CONNS LAYER OVER 7 
DIFFERENT DAYS

5) Lateral Movement through Pivoting
To get closer to his target, an attacker tends to compromise several internal hosts with higher 
privileges or to access the most internal parts of the corporate network. This activity is called 
lateral movement [12]. Figure 8 reports an example through a common technique named 
pivoting [36], where an attacker creates a tunnel of communications among multiple hosts 
(pivoters) to access a LAN that cannot be reached directly from the outside. 

FIGURE 8. EXAMPLE OF LATERAL MOVEMENT THROUGH PIVOTING

In top-K

in top-5

in top-10

in top-25

in top-50

Server 1 (small)

94.7%

96.2%

99.5%

99.8%

Server 2 (medium)

98.9%

99.8%

100%

100%

Server 3 (large)

99.9%

100%

100%

100%
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To prioritise lateral movements, we define the risk score 𝐿𝑀 as follows:

where  and  take into account new paths in the communications graph (see Section 
4), while  and  check whether an increment in the average duration of the flows 
has occurred. (We recall that a pivoting tunnel has to last for some time [36]). We perform 
several experiments involving up to 10 controlled clients as intermediate pivoter hosts in the 
lateral movement (see Figure 8). Table 8 reports the percentages of times a pivoter host is 
ranked within the top-K risky nodes. The different columns correspond to different lengths of 
the pivoting tunnel. For example, Figure 8 presents a tunnel of length 2 with two pivoter hosts. 

TABLE 8. PERCENTAGE OF TIMES A HOST PERFORMING LM IS RANKED WITHIN THE TOP-K

C. Autonomous Triage to Support Security Analysts
We present how results can be combined to produce an overall ranking, useful for security 
analysts to focus on few suspicious hosts. 

FIGURE 9. ONLINE AUTONOMOUS TRIAGE OF INTERNAL HOSTS FOR DIFFERENT ATTACK 
SCENARIOS 

Figure 9 reports the overall rankings, with each line corresponding to a different attack: R 
for reconnaissance, DTD for data transfer to dropzone, MITM for man in the middle, WH 

In top-K

in top-5

in top-10

in top-25

in top-50

1 pivoter

96.2%

97.9%

99.1%

99.8%

3-5 pivoters

99.7%

99.9%

100%

100%

8-10 pivoters

99.9%

100%

100%

100%

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 20,2023 at 17:38:54 UTC from IEEE Xplore.  Restrictions apply. 



17

for watering hole through DNS spoofing, and LM for lateral movement through pivoting. On 
the leftmost or rightmost side is the host with higher or lower risk score, respectively, on that 
line. All hosts are represented as rectangles whose size is proportional to the number of top-K 
rankings in which a host appears. For example, host h202 appears in two top-five rankings (first 
for WH, and third for LM), hence its rectangle has a double size. As ranking operations are 
evaluated online, rectangles with a dashed outline denote hosts that recently entered a top-five 
ranking. A similar visualisation supports security analysts in monitoring several cyber threats 
occurring in the core of large networks. The number of top-K hosts to show can be adapted, 
depending on the size of the organisation and the amount of human resources. As a final remark, 
it is important to observe that our proposal makes it hard for an attacker to evade ranking, 
because we monitor changes in activity of each individual host with respect to its history, and 
we produce an overall ranking considering all hosts of the internal network. Hence, an attacker 
would require a complete view of all hosts’ behaviours and history to evade prioritisation 
successfully. 

6. COnCluSIOnS

In this paper, we propose a novel approach based on ranking and prioritisation instead of 
‘guaranteed’ detection. We consider an innovative perspective in which we start by analysing 
individual host behaviours, and then post-correlate outputs to compute various indicators 
corresponding to different attacker activities. A prioritised list of likely compromised hosts is 
passed to human analysts, who can focus their attention only on the most suspicious hosts and 
activities. Experimental evaluations and use-case examples in real-world internal networks of 
more than 1,000 hosts demonstrate the feasibility and scalability of the proposed approach for 
online autonomous triage of different attack scenarios. Future works include the integration of 
attack indicators from external traffic, such as text analysis and statistical characterisation of 
DNS queries to identify possible C&Cs. 
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