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1. Execution Time of JP Attack

We briefly discuss the computational overhead of the
Jigsaw Puzzle (JP) attack. For the feature-space attack, the
computational overhead primarily comes from Algorithm
1 to optimize the trigger. For a given target family, the
algorithm can converge within 2 hours. Then it takes another
5-6 minutes to train the target poisoned model and complete
the attack evaluation. We run the feature-space experiment
on a server with Intel(R) Xeon(R) Silver 4214 CPU @
2.20GHz, 192GB of RAM and Nvidia Quadro RTX 5000
GPU.

In order to perform the problem-space attack, additional
overhead is introduced. First, we have a preparation phase
that involves gadget harvesting, i.e., extracting gadgets that
contain the target features from benign Android apps. For
each feature, we consider a depth of 2 (i.e., searching 2
random benign apps). To complete the searching for all
10,000 features, it takes about 144 hours with a commodity
server with 300GB of RAM and 48 cores Intel(R) Xeon(R)
CPU ES5-2697 v3 @ 2.60GHz. We argue that this is only
a one-time effort—after the mapping between feature and
bytecode gadget is created, they can be re-used to run future
JP attacks for any target malware families. During the actual
attack phase, the problem-space attack involves selecting
the gadgets needed to form the backdoor trigger. Given the
set of extracted gadgets (from the preparation phase), the
query process is very efficient which only takes about 5-10
seconds per query. This means that creating the problem-
space trigger m,, based on the feature-space trigger m using
Algorithm 2 requires about at most 5 minutes for a trigger
of size 30.

2. Evaluation with Additional Defenses

2.1. Evaluation with Activation Clustering (AC)

AC [1] aims to detect poisoning samples in the training
set. The intuition is that clean and poisoning samples will
have different activation patterns in the last hidden layer. If
a class contains poisoning samples, their activation patterns
can be clustered into two distinct groups (one represents
poisoning samples, and the other represents clean samples).
Since we assume poisoning samples would only take a small

Target Set Model Benign Malware
Type Size Silhou. Size Silhou.
Mobisee Clean | (043,057 01T | (0.04,096) 036
Poison | (0.30,0.70) 0.3 | (0.04,096)  0.34
Clean | (031,0.69)  0.13 | (0.04,096) 034
Leadbolt Poison | (0.26,0.74) 0.1 | (0.04,096)  0.34
Tencentp Clean | (0.32,068)  0.12 | (0.04,096)  0.35
* Poison | (0.44,056) 011 | (0.04,096) 034

TABLE 1: Activation Clustering against Selective Back-
door—AC’s implementation assumes that any cluster size smaller
than 0.35 or a high silhouette score (above 0.10-0.15) can indicate
the class is poisoned. In our attack, only 0.1% of benign samples
are poisoned. We do not poison any malware.

portion of the training set, the two clusters would have
uneven sizes.

We run our selective backdoor attack against AC, with a
0.1% poisoning rate. As shown in Table 1, AC does not work
well on our selective backdoor attack: there is not enough
separation between “clean” and “poisoned” activation vec-
tors. For relative cluster sizes, if we use the recommended
threshold ¢t = 0.35, the entire malware class would be
determined as poisoned (although we in fact do not poison
the malware class). At the same time, for the benign class,
some of the clean models (Mobisec and Leadbolt) will be
incorrectly determined as poisoned. If we further examine
the silhouette score, it is close to the threshold values (0.10—
0.15) regardless of whether the model is poisoned. Also,
poisoned models do not necessarily have a higher silhouette
score.

Overall, the results suggest the selective backdoor is
stealthy against AC, for three possible reasons. First, AC
assumes the label of the poisoned data has been flipped
to the target label, but our attack keeps the original label
for the poisoning samples. Second, the selective backdoor
has reduced the activation differences between clean and
poisoning samples. Third, there are diverse samples within
the malware class which violates AC’s assumption.

2.2. Evaluation with Neural Cleanse (NC)

NC [6] is originally designed for multi-class classifiers.
It tries to infer a trigger for each of the classes and de-
tect anomalously small triggers. However, when there are



Benign Malware
Target Set Clean  Poisoned | Clean Poisoned
Mobisec 21 28 6 6
Leadbolt 21 20 6 7
Tencentprotect 21 22 7 8

TABLE 2: Neural Cleanse against Selective Backdoor—
we present the trigger size inferred by NC from clean and poisoned
models. There is no clear difference in the trigger sizes between
clean and poisoned models, i.e., our attack is stealthy against NC.

only two classes (binary classifiers), it is more difficult to
determine the outlier to find triggers. We adapt NC for
binary classifiers after communicating with the authors of
NC. More specifically, We used the trigger injection function
A(x,m) = (1—m)-z+m where m is the reversed trigger.
We convert m to binary values with a value larger than 0.5
as 1 otherwise 0. With this generic form, we only allow
adding a feature to the vector without any feature removal
(to mimic our attack). We also change the learning rate
from 0.1 to 0.001 and initialize the regularization term as
0.001 instead of 0. Other parameters follow the same setting
as NC. We run our selective backdoor attack, and apply
NC to infer triggers for both clean and poisoned models.
Since we cannot run outlier detection on two classes (as
described above), we simply report the inferred trigger size
as NC takes the “benign” and “malware” as the target class,
respectively. We want to see if there is a clear difference
between the trigger size distribution inferred from the clean
model and the poisoned model. The results are reported in
Table 2 (all trigger success rates >0.99).

From Table 2, we observe that there is no clear differ-
ence in the trigger size distribution between the clean model
and the poisoned model. This means NC cannot effectively
determine whether a model is poisoned based on the trigger
size information. We suspect that the reason why NC has
inferred triggers from clean models is that there exist feature
combinations that can achieve the evasion effect on clean
models. Interestingly, the inferred trigger size is larger when
NC uses the “benign” as the target class (which is the real
target class of our attack). This violates NC’s expectation
since NC assumes the trigger should be smaller for the truly
poisoned class. Overall, the results confirm that our selective
backdoor is stealthy against NC.

3. Attacks Under More Challenging Settings

We show attack results under more challenging settings
including transferred attacks and exposing clean target sam-
ples to defenders.

Impact of Different Architectures. = We examine the
impact of architecture differences between the target model
and the attacker’s local model on the attack results. Recall
that the target model uses MLP (10000-1024-1). Here, we
let the attacker use a simpler local MLP model (10000-
32-1) to compute the trigger. As shown in Table 3, the
attack is still effective. The mismatched architecture causes
small performance degradation on Mobisec and Leadbolt.
Interestingly, for Tencentprotect, ASR(X) is reduced to

Local Model Target Set | Trg. Size | ASR(X7) | ASR(Xj) | Fi(main)
Mobisec 21 0.950 0.387 0.928
10000-32-1 Leadbolt 29 0.985 0.659 0.928
Tencentprotect 25 0.900 0.291 0.928
Mobisec 22 0.992 0.246 0.928
10000-2048-1 Leadbolt 24 0.947 0.206 0.927
Tencentprotect 24 0.968 0.494 0.927

TABLE 3: Transferred Attack under Different Architec-
tures—Both the attacker and the target models are MLP. The
attacker’s local model has a different architecture from the target
model (10000-1024-1). The poisoning rate is the default 0.001.

Poison R. Target Set | Trg. Size | ASR(X7) | ASR(X7F,) | Fi(main)
Mobisec 20 0.306 0.070 0.837
0.001 Leadbolt 18 0.613 0.056 0.834
Tencentprotect 23 0.128 0.243 0.837
Mobisec 20 0.857 0.322 0.839
0.005 Leadbolt 18 0.833 0.238 0.836
Tencentprotect 23 0.322 0.387 0.829
Mobisec 20 0.980 0.708 0.835
0.05 Leadbolt 18 0.950 0.617 0.829
Tencentprotect 23 0.879 0.715 0.835

TABLE 4: Transferred Attack under Different Models
(MLP-SecSVM)—the attacker’s local model is an MLP but
the target model is a SecSVM. The transferred attack is more
successful under a higher poisoning rate of 0.05. The Fi(main) of
the poisoned models are comparable with a clean SecSVM model
(F1 = 0.837).

0.900 (from 0.954), but the ASR(X},) is also reduced to
0.291 (from 0.500) for better stealth. We also test a local
model with a more complex architecture (10000-2048-1)
and confirmed the transferred attack performance is still
comparable.

Transferred Attack under SecSVM. To explore the
transferability of the JP attack across models, we perform
one additional experiment with SecSVM. SecSVM [2] is
an SVM model designed to be more resistant to adversarial
examples. The high-level idea is to force the model to assign
more evenly-distributed feature weights when classifying
malware from benign samples. As a result, it becomes more
difficult for attackers to identify and manipulate a small set
of features to evade the detection (i.e., increasing attacker
costs). In this experiment, we simulate the scenario where
the attacker has imperfect knowledge about the target clas-
sifier. More specifically, the attacker optimizes the trigger
pattern using a local MLP classifier. Meanwhile, the target
classifier was trained using SecSVM. Due to the significant
differences between MLP and SecSVM, we expect it is more
difficult for the JP attack to transfer.

The results of the experiments are presented in Table 4.
First and foremost, using SecSVM (for better robustness)
would sacrifice model accuracy. The SecSVM clean model
has an F of 0.837, which is much lower than that of MLP
(above 0.92, see Table 3).

Regarding attack effectiveness, under the default poison-
ing rate of 0.001, the transferred backdoor effect is relatively
weak on the target model with a low ASR(X7) for all
the tested families. This confirms our intuition above. Then,
to improve transferability, we increase the poisoning rate
to 0.005. We observe that the ASR(X.) of Mobisec and
Leadbolt are improved to over 0.83 with reasonably low
ASR(X7,). However, Tencentprotect (an underperforming
family) still has a low ASR(X7). If we use a higher



Target Set | Tri. Size | ASR(X}) | ASR(X}) | Fi(main)
Mobisec 21 0.996 0.238 0.927
Leadbolt 25 0.881 0.343 0.928

Tencentprotect 32 0.885 0.522 0.929

TABLE 5: Exposing Clean Target Samples to Defender—
we expose 2/3 of the target set samples (clean samples with correct
malware labels) to the target model. The attack is still effective.

poisoning rate of 0.05, the ASR(X) of all families are
improved to a high level (above or close to 0.9). The
resulting ASR(X7},) are around 0.6-0.7.

The results confirm that (1) the JP attack still pre-
serves some level of transferability over drastically different
models, and (2) using a higher poisoning rate improves
transferability.

As suggested in prior works [4], attackers may improve
the transferability of a black-box attack by jointly optimizing
the attack against a local ensemble of different models. It
is possible this idea would be applicable to the JP attack
too, and we defer more comprehensive experiments to future
work.

Exposing Clean Target Set Samples to Defender. In
practice, the defender may have previously collected clean
samples from the target family (e.g., old variants). If the
defender’s training has included these clean samples (with
correct malware label), it may counteract the influence of the
poisoning. To evaluate this, we select “2/3 of the target set T'
samples, and expose these clean samples (with “malicious”
label) to the target model during training and poisoning. We
report the results in Table 5. As expected, the ASR(X7) is
reduced due to exposure to the clean samples. However, the
success rate is still higher than 0.88, indicating the attack
can overcome the counter-effect of these clean samples.

4. JP Attack on Windows PE Malware

To explore the generality of the JP attack beyond An-

droid malware, we briefly evaluate the feature space at-
tack on a Windows PE malware dataset BODMAS [7].
We choose BODMAS mainly because it provides curated
malware family information. BODMAS has 134,435 PE
samples (77,142 goodware and 57,293 malware) collected
between August 2019 and September 2020.
Configurations. Similar to the Android malware dataset,
we randomly split the dataset for training (67% ) and testing
(33%). We leverage the feature vectors provided by the
BODMAS dataset with 2,381 features in total. Next, we
train a similar MLP binary classifier as used in SOREL-
20M [3]. The MLP model has three hidden layers as 512-
512-128 and a dropout rate of 0.05. Other parameters are
the same with the Android experiment except that we run
up to 1000 iterations for better convergence.
Differences with Android Malware Attack. Different
from the Android malware dataset, BODMAS provides real
feature values instead of binary values. To adapt to real
values, we refine the definition of poisoned sample z*:

zr=1-mox+mo (1—=x). (1)

Target Set #of | Trig. | ASR ASR FPR 1
Family PE Size | (X7) | (X%) | (XF) | (main)
Zegost 40 147 1.000 | 0.951 | 0.0000 | 0.981
Banker 65 7 1.000 | 0.563 | 0.0000 | 0.981
Mocrt 80 243 1.000 | 0.930 | 0.0000 | 0.981
Banload 150 47 0.909 | 0.717 | 0.0000 | 0.981
Fasong 198 131 0.774 | 0.305 | 0.0000 | 0.981
Stormser 211 221 0.980 | 0.732 | 0.0002 | 0.981
Blocker 273 55 0.993 0.489 | 0.0001 | 0.982
Mydoom 299 281 0.958 | 0.831 | 0.0006 | 0.981
Padodor | 712 381 1.000 | 0.966 | 0.0000 | 0.981
Benjamin | 1,071 3 1.000 | 0.460 | 0.0000 | 0.980

TABLE 6: PE Malware Attack Results—Attack effective-
ness for PE malware in the feature space.

Target Set #of | Trig. | ASR ASR FPR J
Family PE Size | (X7) | (XF) | (XF) | (main)
Zegost 40 70 0.870 0.556 | 0.0025 | 0.980
Mocrt 80 38 0.953 0.270 | 0.0001 | 0.981
Mydoom | 299 11 0.840 0.402 | 0.0003 | 0.981
Padodor | 712 69 0.924 0.641 | 0.0005 | 0.981

TABLE 7: PE Malware Attack Results with Parameter
Tuning—Increasing A4 from 0.001 to 0.01, all the 4 previously
underperforming families have better results that are on par with
other families.

where m; = 1 means that x; (the i;, feature value of x)
is replaced with the value 1 — z;, and m; = 0 means we
keep the original value of x;. Another important change
is that after each iteration of alternate optimization, we do
not binarize the value of m as we did for the Android
dataset. Instead, we feed them directly to the next iteration
of poisoned model training.

Attack Results. To evaluate the attack effectiveness on
BODMAS, we randomly select 10 families of different sizes
as the target family to run the JP attack. As shown in Table 6,
we can see that the JP attack is effective for 6 out of 10
families by using the default hyperparameters. Most of the
ASR(X}.) are over 0.95 and often 1.00. But we do notice
that the ASR(X7},) is not as low as before. A potential
reason is that the real feature values enlarge the search
space to find an area that is selective to the target set. For
the 4 underperforming families (Zegost, Mocrt, Mydoom,
Padodor), we observe that they have larger losses when
solving the trigger. By increasing the regularization term A4
from 0.001 to 0.01, all 4 families have comparable results
to other families, as shown in Table 7.

5. Trigger Realization: Running Example

The purpose of this section is twofold: (1) to give a
refresher on the technical details of organ transplantation
from Pierazzi et al. [5], and (2) to explain the novelty of our
problem-space trigger realization process. Here, we consider
one example of the trigger realization process in which we
construct a problem-space JP trigger targeting the Mobisec
family.

Trigger Gadget Discovery. First, the optimization proce-
dure in Algorithm 1 produces a feature-space trigger which
contains the following realizable features:

e Activity: CameraActivity



rid.hth.Xz2U.z.cd S$r4;
android.content.Context $r3;
rid.hth.XzU.z.p $r6;
android.content.Intent $r2;
java.lang.String $rl, $r5;

® N U R W -

$r2 = new android.content.Intent;
specialinvoke $r2.<android.content.Intent: void <init
>0 >0);

9 $r3 = <rid.hth.XZU.z.ce: android.content.Context c>;
10 | virtualinvoke $r2.<android.content.Intent: android.
content.Intent setClass(android.content.Context,
java.lang.Class) > (Sr3,

‘ class "Lcom/cashrich/cashrich/CameraActivity;" );
11 | virtualinvoke $r2.<android.content.Intent: android.
content.Intent setFlags(int)>(268435456);

12 | $r3 = <rid.hth.XZU.z.ce: android.content.Context c>;
13 [...]

14 return;

Listing 1: Bytecode extracted from a benign donor app
containing a target feature required as part of the trigger.
The target feature is CameraActivity as highlighted.

o URL: https://api.weibo.com/2/statuses/upload.json

o URL: https://sdk.hockeyapp.net/

o URL: http://etherx.jabber.org/streams

e APIL: addGpsStatusListener (.)

e APl: android.media.AudioManager

.startBluetoothSco(.)
e APL: android.app.NotificationManager
.notify(.)

Ideally, this trigger will be applied to the benign-labeled
poisoning set at training time, and the target malware at
testing time for triggering the backdoor. However, to apply
the trigger in a real-world setting, it must first be realized
in actual bytecode. To do so, while ensuring the samples
remain functional and plausible, we use the transplantation
framework created by Pierazzi et al. [5]. The first step is
to extract bytecode gadgets using static analysis from a
set of benign donor samples which contain each of the
target features. Listing | shows such a gadget, in Jimple
intermediate representation (IR), containing a reference to
the target feature CameraActivity at line 10.

Side Effect Features. To generate more realistic-looking
bytecode, each gadget is augmented with a forward and
backward slice computed by traversing the donor’s System
Dependency Graph. The forward slice transitively includes
all referenced classes and methods up to a given depth, while
the backward slice extracts statements needed to construct
the parameters for the target call.

For example, for the CameraActivity feature, we
do not want to import just the code of the Activ-
ity itself but also any associated Intent invocation and
other classes referenced by the Activity. This is to en-
sure the inserted code is not “dead code” (which can
be easily removed by static analysis). Listing 2 shows a
small part of com.cashrich.cashrich.adapter.
RedeemListAdapter, one such transitive dependency.

Injecting gadgets rather than isolated statements in-
creases the plausibility of the injected code, but means each

[...

if $r3 != null goto labell;

$Sr4 = r0.<com.cashrich.cashrich.adapter.
RedeemListAdapter: android.app.Activity activity
>;

4 | $r5 = virtualinvoke $rd.<android.app.Activity: java.

w o =

‘ lang.Object getSystemService (java.lang.String)> (‘
"layout_inflater");

5 | $r3 = (android.view.LayoutInflater) $r5;
6 | r0.<com.cashrich.cashrich.adapter.RedeemListAdapter:
android.view.LayoutInflater inflater> = $r3;

7 [...]

Listing 2: Abridged dependency containing a side-effect
feature. The side-effect feature is highlighted.

gadget introduces additional side-effect features—features
that are not contained in the trigger but must be car-
ried over to ensure the code is realistic. Line 4 of List-
ing 2 shows code that will induce the side-effect feature
getSystemService (.) in the feature space.

Additional side-effect features may reduce the effective-
ness of the JP trigger. In order to introduce as little variance
as possible, we run Algorithm 2 over the pool of available
donors to find the set of problem-space gadgets that generate
the fewest number of such features. In our example, the code
gadget extracted for the target feature CameraActivity
induces three additional side-effect features:

e Intent: android.intent.action.MAIN

o Sensitive API: getSystemService (.)

e API: android.hardware.Camera
.openotify(.)

To capture the remaining trigger features, the optimum
problem-space trigger for our donor set, in this scenario,
introduces 24 further side-effect features (i.e., 31 in total),
while staying compliant with the problem-space constraints.

Robust Semantic-Preserving Triggers. In order to protect
the trigger from preprocessing techniques that eliminate
unreachable code, we enclose our slice inside an opaque
predicate: a carefully obfuscated set of conditionals where
the outcome is always False, but the actual truth value
is difficult to determine during static analysis. This also
ensures that the injected code won’t execute at runtime,
preserving the original semantics of the malware. Also, to
avoid altering the statistics of the donor’s code distribution,
we insert the gadgets into a method such that the cyclomatic
complexity would be similar to the global average after the
injection.

Enlarging the Search Space. The original research proto-
type [5] was limited to extracting only two types of gadgets
from Android APKs (i.e., Activities and URLs). In this
paper, our extension allows for the extraction of all types
of gadgets mapping to the feature space. This allows us
to realize the backdoor trigger with more flexible feature
choices, i.e., less predictable and thus better stealth.
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